SAF.ET1.ST03.1000-REP-01-01
ANS Software Lifecycle Definition

ANS Software Lifecycle Definition
SAF.ET1.ST03.1000-REP-01-01

PART I

ANS SOFTWARE

LIFECYCLE DEFINITION
This page is intentionally left blank.

TABLE OF CONTENTS

PART I – ANS SOFTWARE LIFECYCLE DEFINITION

INTRODUCTION
61
PURPOSE OF PaRt i

82
DEFINITIONS

CHAPTER 1
121
SOFTWARE SAFETY ASSURANCE SYSTEM OBJECTIVES

152
SOFTWARE Assurance LEVEL

153
SOFTWARE SAFETY ASSESSMENT

163.1
SOFWARE SAFETY ASSESSMENT INITIATION

173.2.
SOFTWARE SAFETY ASSESSMENT PLANNING

183.3.
SOFTWARE REQUIREMENTS SPECIFICATION

193.4
SOFTWARE SAFETY ASSESSMENT VALIDATION, VERIFICATION AND PROCESS ASSURANCE

193.5
SOFTWARE SAFETY ASSESSMENT COMPLETION

CHAPTER 2
221
ACQUISITION PROCESS

242
SUPPLY PROCESS

263
DEVELOPMENT PROCESS

293.1
PROCESS IMPLEMENTATION

313.1.1
SOFTWARE DEVELOPMENT PLAN

333.2
SYSTEM REQUIREMENTS ANALYSIS

343.3
SYSTEM ARCHITECTURAL DESIGN

353.4
SOFTWARE REQUIREMENTS ANALYSIS

373.5
SOFTWARE ARCHITECTURAL DESIGN

393.6
SOFTWARE DETAILED DESIGN

413.7
SOFTWARE CODING

423.8
SOFTWARE INTEGRATION

433.9
 SYSTEM INTEGRATION

443.11
 SOFTWARE INSTALLATION

454
OPERATION PROCESS

465
MAINTENANCE PROCESS

CHAPTER 3
491
DOCUMENTATION PROCESS

512
CONFIGURATION MANAGEMENT PROCESS

543
QUALITY ASSURANCE PROCESS

564
VERIFICATION PROCESS

574.1
PROCESS IMPLEMENTATION

594.2
VERIFICATION

645
VALIDATION PROCESS

656
JOINT REVIEW PROCESS

677
AUDIT PROCESS

688
PROBLEM RESOLUTION PROCESS

CHAPTER 4
711
MANAGEMENT PROCESS

732
INFRASTRUCTURE PROCESS

743
IMPROVEMENT PROCESS

754
TRAINING PROCESS

CHAPTER 5
781
SOFTWARE DEVELOPMENT ENVIRONMENT

792
Commercial Off The Shelf (COTS) CONSIDERATIONS

792.1
COTS DEFINITION

802.2
 Scope of COTS Section

802.3
 System Aspects Relating to COTS in ANS

802.4
 COTS Planning Process

812.4.1
COTS Planning Process Objectives

812.4.2
COTS Planning Process Activities

822.5
 COTS Acquisition Process

832.5.1
COTS Acquisition Process Objectives

842.5.2
COTS Acquisition Process Activities

852.6
 COTS Verification Process

852.6.1
COTS Verification Process Objectives

852.6.2
COTS Verification Process Activities

852.6.3
Alternative Methods for COTS

852.6.4
Use of Service Experience for Assurance Credit of COTS Software

872.7
 COTS Configuration Management Process

872.7.1
COTS Configuration Management Process Objectives

872.7.2
COTS Configuration Management Process Activities

882.8
 COTS Quality Assurance

892.9
 COTS Specific Objectives

INTRODUCTION

1
PURPOSE OF part i
The main purpose of this part of this document is to define a recommended ANS software lifecycle.

This ANS software lifecycle is reusing IEC/ISO12207 processes structure, because this standard has the widest coverage (from definition till decommissioning) of ANS needs. However, this report does not intend at all to promote any standard, neither to state that any standard fits best ANS needs (even if IEC/ISO 12207 has been used as a processes structure basis).

The purposes of this part of this document are the following:

· To propose a software lifecycle tailored to ANS

· To provide a traceability matrix. For each listed objective a reference is given to the standard paragraph, which covers this objective. This traceability allows having access directly to the exact wording of a standard, for those who want to assess more accurately how a standard covers an objective.

· To provide a compatibility matrix between standards, which will allow identifying commonalities and differences between standards. So, suppliers, ATS providers, regulators and any other organisation or group will be able to evaluate characteristics of a system or equipment integrating software without requiring the use of the standard recommended by its organisation. This compatibility matrix will allow every actors to “speak the same language” when talking about software standards.

· To provide a synthetic overview of objectives and activities coverage by each standard. Tables give at a first glance a general view if objectives are implemented or not using the following symbols:

· (
(means fully covered)

· P
(partially covered)

· blank
(not covered

ED109/DO278 traceability is including specific considerations due to the fact that ED109/DO278 is not a stand-alone document
 as it is based on ED-12B/ DO-178B.
· To identify area of improvement of existing standards, especially because of ANS particularities.

· To identify objectives which have to be modified for ANS purposes.

The set of ANS software lifecycle processes is divided into:

· A software safety assurance system,

· Five primary processes,

· Eight supporting processes,

· Four organisational processes,

· Additional ANS software lifecycle objectives.

Some process descriptions are printed using ITALIC characters because they are copied from ISO/IEC 12207.

Specific interpretation & notation regarding mapping to CMMI model:

The CMMI is designed for any type of development or services, and there is no specific safety “amplification” for safety-constrained development or services. So, rather than pure traceability, the following part of tables related to the CMMI identifies mapping or relationship (full, partial or none).
”Mapping” stands for “same Activity, but not systematically the same point of view nor the same level of detail”, where “traceability” stands for “equivalent level of requirement (same coverage, same level of detail)”. Refer also to Part II section 5, §1.1 for more details on relationships between ANS Life cycle philosophy & CMMI philosophy.

The detailed used references are the following (where XXX is the acronym of a CMMI Process Area)

· XXX (mapping to the global Process Area XXX

· XXX1 (respectively XXX 1, 2)(mapping to the set of practices related to the goal 1 (respectively to the set of goals 1 and 2) of the Process Area XXX

· XXX 2.1 (respectively XXX 1.1, 2.1, 3.2) (mapping to the Specific Practice 2.1 (respectively to the set of Specific Practices “1.1, 2.1 & 3.2”) of the Process Area XXX

· GP 2.4 (respectively GP 2.4, 2.7)(mapping to the Generic Practice “GP2.4” (respectively to the set of Generic Practices “2.4, 2.7”) for the set of Process Areas

· XXX GP 2.1 (respectively GP 2.1, 2.7)(mapping to the Generic Practice « 2.1 » (respectively to the set of Generic Practices “2.1, 2.7”) of the Process Area XXX

2 DEFINITIONS

	Adaptation Data
	Data used to customise elements of the Air Traffic Management System for their designated purpose (See note1).

	ANS
	Air Navigation System

	Approval
	A means by which an authorised body gives formal recognition that a product, process, service, or operation conforms to applicable requirements.

Note:
For example, approval is a generic term to refer to certification, commissioning, qualification, initial operational capability, etc.

	Approval Authority
	The relevant body responsible for the approval in accordance with applicable approval requirements.

	Configuration data
	Data that configures a generic software system to a particular instance of its use (for example, data for flight data processing system for a particular airspace, by setting the positions of airways, reporting points, navigation aids, airports and other elements important to air navigation)

	Documentation
	Set of documentation items related to a life cycle phase and necessary as inputs to perform other life cycle activities

	HMI
	Human Machine Interface

	Software
	Computer programs and corresponding configuration data, including non-developmental software (e.g. proprietary software, Commercial Off The Shelf (COTS) software, re-used software, etc.), but excluding electronic items such as application specific integrated circuits, programmable gate arrays or solid-state logic controllers.

	Software Component
	A distinct part of a Software. Software component may be further decomposed into other Software Components and Software Units.

	Software Failure
	The inability of software to perform a required function correctly.

	Software Unit
	An element specified in the design of a Software Component that is separately testable.

	Supplier
	A person or organisation seeking approval from the Approval Authority.

	System
	An Air Navigation System is composed of People, Procedures and Equipment (Software, Hardware and HMI)

	Validation
	Confirmation by examination and provision of objective evidence that the particular requirements for a specific intended use are fulfilled (usually used for internal validation of the design).

	Verification
	Confirmation by examination of evidence that a product, process or service fulfils specified requirements.

Note 1: Extended definition of adaptation data

Adaptation data is utilized to customize elements of the CNS/ATM system for its designated purpose at a specific location. These systems are often configured to accommodate site-specific characteristics. These site dependencies are developed into sets of adaptation data. Adaptation data includes:

· Data that configures the software for a given geographical site, and

· Data that configures a workstation to the preferences and/or functions of an operator.

Examples include, but are not limited to:

a. Geographical Data – latitude and longitude of a radar site.

b. Environmental Data – operator selectable data to provide their specific preferences.

c. Airspace Data – sector-specific data.

d. Procedures – operational customization to provide the desired operational role.

Adaptation data may take the form of changes to either database parameters or take the form of pre-programmed options. In some cases, adaptation data involves re-linking the code to include different libraries. Note that this should not be confused with recompilation in which a completely new version of the code is generated.

Adaptation data should be developed to the same assurance level as the one of the code that processes them.

[image: image1.wmf]1

SOFTWARE SAFETY ASSURANCE SYSTEM

Software Safety Assurance System encompasses the following tasks:

1) Software Safety Assurance System Objectives

2) Software Assurance Level

3) Software Safety Assessment

1) Software Safety Assessment Initiation

2) Software Safety Assessment Planning

3) Software Safety Requirements Specification

4) Software Safety Assessment Validation, Verification & Process Assurance

5) Software Safety Assessment Completion

The implementation of the Software Safety Assurance System is the responsibility of the ANSP (Air Navigation Service Provider).

1 SOFTWARE SAFETY ASSURANCE SYSTEM OBJECTIVES

The following table lists the recommended objectives to implement a Software Safety Assurance System.

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	;
	CMMI

	1
	3.0.1
	Implementation
	A Software Safety Assurance System should be defined, implemented and documented.
	
	P
	P
	P
	
	

	2
	3.0.2
	Requirements Correctness and Completeness
	The software requirements correctly state what is required from the software by the system safety assessment
	P

(Ref: 5.3.4)
	(
(Ref: 3.2 –

Table A-2 (lines 1,2) Table A-3 (lines 1, 2)
	P
(Ref: 5.1)
	(
(Ref: 7.2.2)
	
	(
(Ref: RD 1.1, 1.2, 2.1)

	3
	3.0.3
	Requirements Traceability Assurance
	All software requirements are traced to the level required by the SW AL
	P

 (Ref: 5.3.4.2; 5.3.5.6; 5.3.6.7; 5.3.7.5)
	(
(Ref: A3.6, A4.6, A5.6)
	(
(Ref: 5.5)
	P
	
	 P
(Ref: ReqM 1.4)

	4
	3.0.4
	Unintended Functions
	The software implementation should contain no functions, which adversely affect safety or whose effect is not consistent with the safety analysis.
	
	(
(Ref: 3.6 Table A-5 line 1)
	P
(Ref: 6.3.4.a)
	P
(Ref: 7.4.7.2)
	
	

	5
	3.0.5
	SW AL Allocation
	Any ANS software intended for operational use is allocated a Software Assurance Level (SW AL).
	
	(
(Ref: Appendix B.4
	(
(Ref: 2.2.2, 2.2.3)
	(
(Ref: 7.5.2, 7.6.2)
	
	

	6
	3.0.6
	Requirements Satisfaction Assurance
	The ANS software satisfies its software requirements with a level of confidence which is set according to the SW AL allocated during PSSA
	
	(
(Ref: 2.1)
	(
(Ref: 5.1)
	(
(Ref: 7.2)
	
	

	7
	3.0.7
	Configuration Management

Assurance
	Assurances should be at all times derived from a known executable version of the software, a known range of configuration data, and a known set of software products and descriptions that have been used in the production of that version.
	 (
 (Ref : 6.2)
	(
(Ref: 3.8 Table A-8)
	(
(Ref: 7)
	(
(Ref: 6.2.3)
	
	(
(Ref: CM)

	8
	3.0.8
	Assurance Rigour Objective
	The assurances and the levelling of assurances should give sufficient confidence that the ANS software can be operated, as a minimum, acceptably safely.
	
	(
(Ref: 2.1)
	(
(Ref: 2.1, 9 & 11.20)
	(
(Ref: Part 1 –7.4.2)
	
	

	9
	3.0.9
	Assurance Rigour Criteria (Obj
	The variation in rigour of the assurances per software assurance levels should be specified with the following criteria:

· required to be achieved with independence,

· required to be achieved,

· not required.
	
	(
(Ref: Chap 3)
	(
(Ref: Appendix A)
	(
(Ref: Appendix A)
	
	

	10
	3.0.10
	SW AL Assurance
	Assurance should provide confidence that SW AL is achieved.
	
	(
(Ref: 3.10 Table A-10 ; 5.1)
	(
(Ref: 9 & 11.20)
	(
(Ref: 6.2.2)
	
	

	11
	3.0.11
	SW AL Monitoring
	Assurance should be given that once in operation the software meets its SW AL through monitoring.

Feedback of ATM software experience should be used to confirm that the Software Safety Assurance System and the assignment of assurance levels is appropriate. For this purpose, the effects resulting from any reported software malfunction or failure from ATM operational experience, should be assessed in respect of their mapping to SWAL definition (See Chapter 2 of this document) .

(Reported Software malfunction or failure are output of the ATM occurrence reporting system as part of the ATMSP Safety Management System).
	
	P

(Ref: 4.1.6.3)
	
	
	
	

	12
	3.0.12
	Software Modifications
	Any change to the software should lead first to re-assess the safety impact of such a change on the system and then on the SWAL allocated to this software.
	
	P

(Ref: 4.1.4.2)
	
	(
(Ref: 7. 8)
	
	

	13
	3.0.13
	COTS
	The same level of confidence, through any means chosen and agreed with the Designated Authority, should be provided with the same software assurance level for developmental and non-developmental ATM software (e.g. Commercial Off The Shelf software, etc).
	
	(
(Ref: 4.2)
	
	
	
	

	14
	3.0.14
	Independence
	ATM software components that cannot be shown to be independent of one another should be allocated the software assurance level of the most critical of the dependent components.
	
	(
(Ref: Chap
	(
(Ref: Chap
	(
(Ref: Chap
	
	

	15
	3.0.15
	All on-line aspects of SW operational changes
	The Software Safety Assurance System should deal specifically with software related aspects, including all on-line software operational changes (such as cutover/hot swapping).
	
	
	
	
	
	

Note: IEC12207, ED12B/DO178B, ED109/DO278 and IEC61508 consider a system as being hardware and software. The Safety Assessment Methodology (SAM), which this document is part of , defines a system as composed of people, procedure and equipment (software, hardware and Human Machine interface (HMI)). Consequently, the people and procedure aspects of a system are not taken into account by these 4 standards.

2 SOFTWARE Assurance LEVEL

See “Recommendations for ANS SW” V1.0 Chapter 2 or SAM-PSSA Chapter 3 Guidance Material A V2.0 (§2.4.2).

3 SOFTWARE SAFETY ASSESSMENT

The FHA is conducted at a functional level, so the software architecture and design are not known at that stage. Therefore FHA does not address hardware and software safety requirements and assurance level.

However, for a system including safety‑related software there is a need to analyse the software (function and/or architecture and design) in order to gain assurance that the set of hazards identified during the FHA is correct and complete.

To achieve this certain sub‑processes and tasks may be applicable for re‑assessing the FHA output at software level. Examples of such are:

· Identification of software failures which confirms the results of the original FHA.

· Identification of software failures (due to e.g. software faults or interface errors that cannot be found at the functional or operational level) which could result in the occurrence of new hazards not identified at the FHA level.

The PSSA intends to identify a system architecture that will meet the safety objectives and apportions these safety objectives into safety requirements to the system elements (people, procedure and equipment (hardware, Software, HMI).

Safety requirements for software are mainly stated as Software Assurance Level.

Anyhow, system safety assessment process remains iterative, consequently software safety assessment, which is part of the SSA (System Safety Assessment. The third step of the Safety Assessment Methodology), has to confirm, verify and complete (if necessary) the assumptions and outcome of the previous steps.

3.1
SOFWARE SAFETY ASSESSMENT INITIATION

FHA (Functional Hazard Assessment) assumptions and output should be confirmed as far as software can impact them.

PSSA (Preliminary System Safety Assessment) assumptions and output should be confirmed as far as software can impact them.

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	3.1.1
	System Description
	The system description should be suitable to the safety objectives and requirements by performing the following activities:

a) The Software purpose should be defined.

b) Operational scenarios should be defined (especially HMI: Operator Handbook should define the mode of operation and the human-machine interface).

c) The Software/System functions and their relationships should be defined.

d) Software boundaries should be defined (operational, time, ..)

e) Software external interfaces should be described
	
	(
(Ref: 2.2)
	(
(Ref: 2.1)
	(
(Ref: I-7.2.1)
	
	 P
[Ref:

a) RD 1.1
b) RD 3.1, TS 1.2
c) RD 3.2

e) RD 2.3, TS 2.3]

	2
	3.1.2
	Operational Environment
	Develop a level of understanding of the Software and its environment (physical, operational, control functions, legislative etc) sufficient to enable the other safety lifecycle tasks to be satisfactorily carried out.
	
	P
(Ref: 2.2)
	P
(Ref: 2.1.1)
	(
(Ref: I-7.2.1)
	
	P
(Ref: RD 1.1)

	3
	3.1.3
	Regulatory Framework
	Safety regulatory objectives and requirements should be defined.
	
	(
(Ref: 3.10 Table A-10 line 2

 - 5.1)
	(
(Ref: 2.1.1, 9, 10)

	(
(Ref: I-7.2.2.4)
	
	

	4
	3.1.4
	Applicable Standards
	Safety standards applicable to the Software should be defined.
	
	(
	(
	(
	
	

	5
	3.1.5
	System FHA & PSSA Output
	The result of the system FHA (Functional Hazard Assessment) or PSSA (Preliminary System Safety Assessment) should be made available.

Results of similar system safety assessment should be used as a reference.
	
	P

(Ref: 2.2)
	P
(Ref: 2.1.1)
	P
(Ref: I-7)
	
	

3.2. SOFTWARE SAFETY ASSESSMENT PLANNING

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	3.2.1
	Software Safety Assessment Approach
	The overall approach for the Software Safety Assessment across Software Lifecycle should be defined and documented.
	
	(
(Ref: §5.1)
	(
(Ref: 11.1)
	(
(Ref: 8)
	
	

	2
	3.2.2
	Software Safety Assessment Plan
	A plan describing the software safety assessment steps should be produced (e.g. approach, relations between safety assessment and software lifecycle, deliverables (content and s-date), relations with software/system major milestones, project risk management due to safety issues, responsibilities, persons, organisations, risk classification scheme, safety objectives definition approach, hazard identification methods, safety assurance activities, schedule, resource)
	
	(
(Ref: 5.1 - 3.10 Table A-10)
	P
(Ref: 11)
	P
(Ref: I-7.8)
	
	

	3
	3.2.3
	Software Safety Assessment Plan Review
	The Software Safety Assessment plan should be reviewed and commented for suitability and approval.
	
	(
(Ref: 5.1 - 3.10 Table A-10)
	(
(Ref: 9, 10)
	
	
	

	4
	3.2.4
	Software Safety Assessment Plan Dissemination
	The Software Safety Assessment plan should be made available to the interested parties.
	
	P

(Ref: 5.1)
	(
(Ref: 9, 10)
	
	
	

3.3. SOFTWARE REQUIREMENTS SPECIFICATION

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	3.3.1
	Failures Identification
	Failures should be identified by considering various ways Software can fail and by considering the sequence of events that lead to the occurrence of the failure.

The list of single or multiple failures should be drawn.

The combination of failures should be identified.
	
	
	P
(Ref: 2.2)
	(
(Ref: I-7.4)
	
	

	2
	3.3.2
	Failure Effects
	The effects of failure occurrence should be evaluated.

The hazards associated with failure occurrences should be identified.
	
	
	P
(Ref: 2.2.1)
	(
(Ref: I-7.4)
	
	

	3
	3.3.3
	Assessment of Risk
	The purpose of this Activity Title is to classify hazards according to the severity of their consequences.
	
	
	P
(Ref: 2.2.1)
	(
(Ref: I-7.5)
	
	

	4
	3.3.4
	Software Requirements Setting

	a) For each function and combination of functions to which software participates,

· 1- Refine the functional breakdown.

· 2- Evaluate system architecture(s)

· 3- Identify risk mitigation means.

· 4- Apportion Safety Objectives in to Safety Requirements.

· 5- Balance Safety Requirements.
b) Software Requirements should be compliant with the System Safety Objectives.

(System Safety Objectives specify the maximum acceptable frequency of occurrence of a hazard).
	
	
	P
(Ref: 2.2.1)
	(
(Ref: I-7.6)

	
	P
[Ref:

 a.1) RD 2.1, 2.2
a.2) TS 2.1, Ver 1.1, 2.2, 2.3]

	5
	3.3.5
	SW Allocation
	A SW AL should be allocated to the software
	
	
	P

(Ref: 2.2.3)
	P2
(Ref: I-7.6.1)
	
	

Note: Column ED-12B/ DO178B- These tasks are identified as partially met by ED12B/DO178B because section 2 of this document compensates the lack of system safety standard namely ARP4754/4761, which was elaborated after ED12B/DO178B.

3.4 SOFTWARE SAFETY ASSESSMENT VALIDATION, VERIFICATION AND PROCESS ASSURANCE

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	3.4.1
	Software Safety Assessment Validation
	a) Ensure that Software Requirements are complete and correct.

b) Traceability, review and tracking of software safety requirements should be performed.
	P

(Ref: 6.4; 6.5)
	(
(Ref: 3.3

Table A-3 lines 1, 2;

 3.4

Table A-4 lines 1, 2, 6)
	
	
	
	P
[Ref:

 a) RD 3.3, 3.4, 3.5
Ver 2.1, 2.2, 2.3
b) -]

	2
	3.4.2
	Software Safety Assessment Verification
	Software Requirements should be consistent with the outcomes of the hazard effects and hazards description and classification.
	
	(
(Ref: 2.1)
	(
(Ref: 2.2.2)
	
	
	

	3
	3.4.3
	Software Safety Assessment Process Assurance
	Every step of the software Safety Assessment performance should be checked.
	P

(Ref: 6.4)
	(
(Ref: 3.9 Table A-9)
	(
(Ref: 8)
	
	
	

3.5 SOFTWARE SAFETY ASSESSMENT COMPLETION

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	3.5.1
	Document Software Safety Assessment Process Results
	The Software Safety Assessment process results should be documented.
	P

(Ref: 6.1)
	P
(Ref: 5)
	P
(Ref: 11, Annex A)
	P
(Ref: I-7.2.2.6,I-7.3.2.5, I-7.4.2.11)
	
	P

	2
	3.5.2
	Software Safety Assessment Documentation Configuration Management
	Software Safety Assessment documentation should be put under configuration management.
	P

(Ref: 6.2)
	P
(Ref: 3.8 - 4.1.7)
	P
(Ref: 7.3, Annex A)
	P
(Ref: I-7.4.2.12)
	
	P
(Ref: CM 1.1)

	3
	3.5.3
	Software Safety Assessment Documentation Dissemination
	Software Safety Assessment documentation should be disseminated to interested parties.
	
	P
(Ref: 5.1 - 3.10

 Table A-10)
	P
(Ref: 9, 10)
	
	
	P
(Ref:
GP2.7)

[image: image2.wmf]2

PRIMARY LIFECYCLE PROCESSES

Primary lifecycle processes consist of:

1) Acquisition process;

2) Supply process;

3) Development process;

4) Operation process;

5) Maintenance process.

The objectives and tasks in a primary process are the responsibility of the organisation initiating and performing that process. Depending on the lifecycle phase, different organisations may be responsible for performing a process. Each organisation ensures that the process is in existence and functional.

1
ACQUISITION PROCESS

The Acquisition Process contains the objectives and tasks of the acquirer. The process begins with the definition of the need to acquire a system, software product or software service. The process continues with the preparation and issue of a request for proposal, selection of a supplier, and management of the acquisition process through to the acceptance of the system, software product or software service.

The individual organisation having the need may be called the owner. The owner may contract any or all of the acquisition activities to an agent who will in turn conduct these activities according to the Acquisition Process. The acquirer in this sub-clause may be the owner or the agent.

Note: Acquisition process does not relate to business aspects of acquisition, but only to safety and quality aspects of it.

	N°

	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	4.1.1
	Initiation
	a) The acquirer begins the acquisition process by describing a concept or a need to acquire, develop, or enhance a system, software product or software service.

b) The acquirer will define and analyse the system requirements.

c) The system requirements should include business, organisational and user as well as safety, security, and other criticality requirements along with related design, testing, and compliance standards and procedures.

d) The acquirer should prepare, document and execute an acquisition plan.
	(
(Ref: 5.1.1)
	
	
	
	
	(
[Ref:

 all) SAM 2.1;

a) TS 2.4;

b,c)RD1.2,2.1, ReqM1.4;

d) SAM 1.1, GP 2.2, 3.1;

ISM GP 2.2, 3.1]

	2
	4.1.2
	Functional Hazard Assessment
	The acquirer should determine how safe does the system needs to be.
	
	
	
	P
(Ref: I-7.2, I-7.3, I-7.4, I-7.5)
	
	

	3
	4.1.3
	Preliminary System Safety Assessment
	The acquirer should determine (during the System Design phase) whether the proposed architecture is expected to achieve the Safety Objectives defined by the FHA. (Note1)
	
	P
(Ref: 2)
	P
(Ref: 2)
	P
(Ref: I-7.6)
	
	

	4
	4.1.4
	Request For Tender
	The acquirer should determine which processes, activities, and tasks of this International Standard are appropriate for the project and should tailor them accordingly.
	(
(Ref: 5.1.2)
	
	
	
	
	P

(Ref: SAM 1.2)

	5
	4.1.5
	Contract preparation and update
	The acquirer should establish a procedure for supplier selection including proposal evaluation criteria and requirements compliance weighting.
	(
(Ref: 5.1.3)
	
	
	
	
	(
(Ref: SAM 1.2)

	6
	4.1.6
	Supplier monitoring
	The acquirer will monitor the supplier's activities.
	(
(Ref: 5.1.4)
	
	
	
	
	(
(Ref: SAM 2.2)

	7
	4.1.7
	Acceptance and completion
	The acquirer should prepare for acceptance based on the defined acceptance strategy and criteria. The preparation of test cases, test data, test procedures, and test environment should be included. The extent of supplier involvement should be defined.

The acquirer will conduct acceptance review and acceptance testing of the deliverable software product or service and will accept it from the supplier when all acceptance conditions are satisfied.
	(
(Ref: 5.1.5)
	
	
	
	
	(
(Ref: SAM 2.3)

Note 1: To simplify and as the purpose of this document is to describe the objectives related to the software lifecycle, it has been considered that the acquirer performs the PSSA (Preliminary System Safety Assessment). Even if in a real project this step may be performed in relation with the system supplier, however it remains the acquirer responsibility to validate and accept it. As this document focuses on the software-related objectives, the main purpose of the PSSA is to allocate an Assurance Level to the software, which has to remain under the Acquirer ultimate responsibility (at least by validating it, when not allocating it).

Note 2: This document intends to address the software aspects of SSA (System Safety Assessment: the third step of the Safety Assessment Methodology).

2
SUPPLY PROCESS

The Supply Process contains the objectives and tasks of the supplier. The process may be initiated either by a decision to prepare a proposal to answer an acquirer's request for proposal or by signing and entering into a contract with the acquirer to provide the system, software product or software service. The process continues with the determination of procedures and resources needed to manage and assure the project, including development of project plans and execution of the plans through delivery of the system, software product or software service to the acquirer.

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	4.2.1
	Initiation
	The supplier conducts a review of requirements included in the request for proposal taking into account organisational policies and other regulations.
	(
(Ref: 5.2.1)
	
	
	
	
	(
(Ref: RD 1.1, 1.2, 3.3, 3.4)

	2

	4.2.2
	Preparation of response
	The supplier should define and prepare a proposal in response to the request for proposal, including its recommended tailoring of this International Standard.
	(
(Ref: 5.2.2)
	
	
	
	
	(
(Ref: ReqM 1.1)

	3
	4.2.3
	Contract
	The supplier should negotiate and enter into a contract with the acquirer organisation to provide the software product or service.

	(
(Ref: 5.2.3
	
	
	
	
	(
(Ref: ReqM 1.2)

	4
	4.2.4
	Planning
	The supplier should define or select a software lifecycle model appropriate to the scope, magnitude, and complexity of the project.

The processes, activities, and tasks of this International Standard should be selected and mapped onto the lifecycle model.

The supplier should develop and document project management plan(s). NOTE 1
	(
(Ref: 5.2.4)
	P
(Ref: 3.1)
	P
(Ref: 4)
	P
(Ref: I-6)
	
	(
(Ref:

PP 1.3,
 2.7)

	5

	4.2.5
	Execution & control
	The supplier should implement and execute the project management plan(s).

The supplier should monitor and control the progress and the quality of the software products or services of the project throughout the contracted lifecycle.
	(
(Ref: 5.2.5)
	(
(Ref: 3.9, Table A-9)
	P
(Ref: 4.6)
	P
(Ref: I-6.2.2)
	
	(
(Ref: PMC 1
SAM 2.2)

	6
	4.2.6
	Review & evaluation
	a) The supplier should co-ordinate contract review activities, interfaces, and communication with the acquirer's organisation.

b) The supplier should perform quality assurance activities.
	(
(Ref: 5.2.5)
	
	
	P
(Ref: I-6.2)
	
	(
[Ref:

a) PMC 1.5, 1.6, 1.7
b) PPQA]

	7
	4.2.6
	Software Acceptance Definition
	The developer should support the acquirer's acceptance review and testing of the software product. Acceptance review and testing should consider the results of the Joint Reviews, Audits, Software Qualification Testing, and System Qualification Testing (if performed). The results of the acceptance review and testing should be documented.
	(
(Ref: 5.3.13.1)
	
	
	
	
	(
(Ref: PI 3.4
Ver
Val)

	8
	4.2.6
	SW Acceptance Support
	The developer should support the acquirer's acceptance review and testing of the software product.
	(
(Ref: 5.3.13)
	
	
	
	
	

	9
	4.2.7
	Software Product Delivery
	The developer should complete and deliver the software product as specified in the contract.
	(
(Ref: 5.3.13.2)
	
	
	
	
	(
(Ref: PI 3.4)

	10
	4.2.7
	Delivery & completion
	The supplier should deliver and provide assistance to the acquirer in support of the delivered software product or service as specified in the contract.
	(
(Ref: 5.2.6)
	
	
	
	
	(
(Ref: SAM 2.4)

	11

	4.2.7
	Support to Acquirer
	The developer should provide initial and continuing training and support to the acquirer as specified in the contract.
	(
(Ref: 5.3.13.3)
	
	
	
	
	(
(Ref: SAM 2.4)

NOTE 1: Since ANS systems may operate continuously and may have been in operation for many years, the software lifecycle plans for these systems should include processes for software changes, technology upgrades, etc., specifically with respect to safety issues.

3
DEVELOPMENT PROCESS

The Development Process contains the objectives and tasks of the developer. The process contains the objectives for requirements analysis, design, coding, integration, testing, and installation and acceptance related to software products. It may contain system-related objectives if stipulated in the contract. The developer performs or supports the activities in this process in accordance with the contract.

Note: System related objectives are part of FHA & PSSA steps of the System Safety Assessment. However as these processes are interacting in an iterative way, system requirements, architecture, integration, … are to be reassessed to be confirmed and validated when software activities are performed. That is why these system objectives are listed in the software related one (See Part I - Chapter 1 §3).

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1

	4.3.3
	Process Implementation
	 a) The developer should define or select a software lifecycle model appropriate to the scope, magnitude, and complexity of the project.

b) The developer should select, tailor, and use those standards, methods, tools, and computer programming languages.

c) The developer should develop plans for conducting the activities of the development process.
	(
(Ref: 5.3.1)
	(
(Ref: 3.1 Table A-1 lines 1 to 7

for COTS;

4.1.9

Table A-10 lines 1, 2, 3)
	(
(Ref: 3, 4, 11.2)
	P
(Ref: 7.1.2.1,

7.4.1.3,

Part I-7)
	
	(
[Ref:

a) PP 1.3
b) GP 2.2, 3.1, PP2.4
c) PP 2]

	2

	4.3.3
	Software Development Plan
	This plan is used to determine the proposed software lifecycle commensurate with the rigour required for the level of software being developed.
	
	(
(Ref:

3.1 Table A-1, Lines 1, 5, 7;

4.1.4;

4.1.9 line 3)
	(
(Ref: 11.1, 11.2)
	
	
	(
(Ref: PP 1.1, 1.3)

	3
	4.3.1
	System Requirements Analysis
	The system requirements specification should describe: functions and capabilities of the system; business, organisational and user requirements; safety, security, human-factors engineering (ergonomics), interface, operations, and maintenance requirements; design constraints and qualification requirements.
	(
(Ref: 5.3.2)
	P
(Ref: 2.2)
	(
(Ref: 2.1)
	(
(Ref:

Part I-7.6,

Part II-7.2

II-7.9)
	
	(
(Ref: RD 2.1, 2.2, 2.3, 3.2)

	4
	4.3.2
	System Architectural Design
	It should be ensured that all the system requirements are allocated among hardware, software, and manual-operations.
	(
(Ref: 5.3.3)
	P
(Ref: 2.1)
	P
(Ref: 2.3)
	P
(Ref: Part II-7.4)

	
	(
(Ref: RD 2.2, ReqM 1.4)

	5
	4.3.4
	SW Requirements Analysis
	The developer should establish and document software requirements, including the quality characteristics specifications.

	(
(Ref: 5.3.4)
	(
(Ref: 3.2 Table A-2 line 1)
	(
(Ref: 5.1, 11.6, 11.9)
	(
(Ref: 7.2)
	
	(
(Ref: RD 2.1, 2.3)

	6
	4.3.5
	SW Architectural Design
	The developer should transform the requirements for the software item into an architecture that describes its top-level structure and identifies the software components.
	(
(Ref: 5.3.5)
	(
(Ref: 3.2 Table A-2 line 3)
	(
(Ref: 5.2, 11.7, 11.10)
	(
(Ref: 7.4.3)
	
	(
(Ref: TS 2.1, 2.2)

	7

	4.3.6
	SW Detailed Design
	The developer should develop a detailed design for each software component of the software item.
	(
(Ref: 5.3.6)
	(
(Ref: 3.2 Table A-2 lines 1, 2)
	(
(Ref: 5.2, 11.7, 11.10)
	(
(Ref: 7.4.5)
	
	(
(Ref: TS 3.1)

	8
	4.3.6
	SW Coding
	The developer should produce code requirements.
	(
(Ref: 5.3.7)
	(
(Ref: 3.5 Table A-5 lines 1, 2;

3.6

Table A-6 lines 1, 2, 3, 4)
	(
(Ref: 5.3, 11.8, 11.11)
	(
(Ref: 7.4.6, 7.4.7)
	
	(
(Ref: TS 3.1,

Ver)

	9
	4.3.7
	SW Integration
	The developer should integrate the software units and software components into the software item.

	(
(Ref: 5.3.8)
	(
(Ref: 3.1) Table A-1 line 1)
	(
(Ref: 5.4)
	(
(Ref: 7.4.8)
	
	(
(Ref: PI 1.1, 1.3)

	10
	4.3.3
	System Integration
	The software configuration items should be integrated, with hardware configuration items, manual operations, and other systems as necessary, into the system. The aggregates should be tested, as they are developed, against their requirements. The integration and the test results should be documented. For each qualification requirement of the system, a set of tests, test cases (inputs, outputs, test criteria) and test procedures for conducting System Qualification Testing should be developed and documented.

	(
(Ref: 5.3.10)
	
	P
(Ref: 5.4)
	(
(Ref: 7.5,

 Part II-7.5)
	
	(
(Ref: PI 1.3, 3.2, 3.3
Ver)

	11
	4.3.8
	SW Installation
	The developer should develop a plan to install the software product in the target environment as designated in the contract. The resources and information necessary to install the software product should be determined and be available.
	(
(Ref: 5.3.12)
	
	
	(
(Ref:

Part I-7.9.1.1,

I-7.9.2.1,

I-7.9.2.3,

I-7.13.1.1

I-7.13.2.1,

I-7.13.2.2)
	
	(
(Ref: PP 2, PI 1)

3.1
PROCESS IMPLEMENTATION

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	4.3.3, 4.3.16
	Lifecycle Definition
	If not stipulated in the contract, the developer should define or select a software lifecycle model appropriate to the scope, magnitude, and complexity of the project. The activities and tasks of the Development Process should be selected and mapped onto the lifecycle model.
	(
(Ref: 5.3.1.1)
	(
(Ref 3.1

Table A-1 line 3)
	(
(Ref: 3)
	(
(Ref: 7.1.2.1, 7.1.2.3

=>7.1.2.5)
	
	(
(Ref: PP 1.3, 2.1)

	2
	4.3.3, 4.3.15
	Outputs Documentation
	The developer should document the outputs in accordance with the Documentation Process.
	(
(Ref: 5.3.1.2.a)
	(
(Ref 3.1

Table A-1 line 1)
	(
(Ref: 4.1, 4.3)
	(
(Ref: 7.1.2.7)
	
	(
(Ref: GP 2.2, 3.1)

	3
	4.3.3, 5.2
	Outputs Configuration Management
	The developer should place the outputs under the Configuration Management Process and perform change control in accordance with it.
	(
(Ref: 5.3.1.2.b)
	(
(Ref 3.8

Table A-8 line 1 to 6;

For COTS: 4.1.7 Table 4-3 lines 1 to 4)
	(
(Ref: 4.3)
	(
(Ref: 7.1.2.8)
	
	(
(Ref: CM,
GP 2.6)

	4
	4.3.3, 5.8, 5.2.2
	Software Products Problems
	The developer should document and resolve problems and non-conformances found in the software products and tasks in accordance with the Problem Resolution Process.
	(
(Ref: 5.3.1.2.c)
	(
(Ref 3.8

Table A-8 line 3)
	
	
	
	(
(Ref: PMC 2.1, 2.2, 2.3

CM 2.1, 2.2)

	5
	4.3.3, 5.X
	Support Process Compliance
	The developer should perform the Supporting processes as specified in the contract.
	(
(Ref: 5.3.1.2.d)
	(
(Ref 3.9 Table A-9 line 1)
	
	(
(Ref: 7.1.1)
	
	(
(Ref: ReqM1.1
PP2.3, PMC1.4,

PPQA,

PMC 1.6, 1.7, 2

Ver, Val

GP2.9)

	6
	4.3.9, 4.3.10, 4.3.11, 4.3.12, 4.3.14

	Environment Definition
	The developer should select, tailor, and use those standards, methods, tools, and computer programming languages (if not stipulated in the contract) that are documented, appropriate, and established by the organisation for performing the activities of the Development Process and supporting processes.
	(
(Ref: 5.3.1.3)
	(
(Ref 3.1. Table A-1 line 3)
	(
(Ref: 4.4, 4.5)
	(
(Ref: 7.1.2.6, Annex A&B, 7.4.4.2)
	
	(
(Ref: PP 2.4
IPM 1.1
GP 2.2, 2.3, 3.1)

	7
	4.3.3, 4.3.16
	Development Plan
	The developer should develop plans for conducting the activities of the development process. The plans should include specific standards, methods, tools, actions, and responsibility associated with the development and qualification of all requirements including safety. If necessary, separate plans may be developed. These plans should be documented and executed.
	(
(Ref: 5.3.1.4)
	(
(Ref 3.1

Table A-1 line 1)
	(
(Ref: 2.2, 4.1, 4.2 ,11.2)
	P
(Ref: 7.1.2.2)
	
	(
(Ref: PP 2, PMC 1.1

IPM 1.1, 1.3, 1.4

GP 2.2, 2.3, 3.1

)

	8
	4.3.9, 4.3.10, 4.3.11
	Development Standards
	Software development standards (for each phase) consistent with the system safety objectives are defined, under change control and reviewed.
	
	(
(Ref 3.1

Table A-1 line 5)
	(
(Ref 4.1, 4.2)
	P
(Ref: 7.4.4)
	
	P

(Ref: GP2.2)

	9
	4.3.3
	Non-Deliverable Items
	Non-deliverable items may be employed in the development or maintenance of the software product. However, it should be ensured that the operation and maintenance of the deliverable software product after its delivery to the acquirer are independent of such items, otherwise those items should be considered as deliverable.
	(
(Ref: 5.3.1.5)
	(
(Ref 3.1 Table A-1 line 4)
	
	
	
	

3.1.1
SOFTWARE DEVELOPMENT PLAN

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	4.3.3
	System Overview
	The developer should provide an overview of the system (functions and their allocation to the hardware and software, the architecture, processor(s) used, hardware/software interfaces, and safety features)
	
	P

(Ref: 2 ;

4.1.3;

5.1)
	(
(Ref: 11.1)
	(
(Ref: I-7.2.1)
	
	P

(PP 2.7)

	2
	4.3.3
	Software Overview
	The developer should describe the software functions with emphasis on the proposed safety and partitioning concepts.
	
	(
(Ref 5.1)
	(
(Ref: 11.1)
	
	
	

	3
	4.3.3, 4.3.16
	Software Lifecycle
	The developer should describe the software lifecycle processes to be used to form the specific software lifecycle(s) to be used on the project, including the transition criteria for the software development processes.
	
	(
(Ref: 3.1

Table A-1 lines 2, 3)
	(
(Ref: 11.1, 11.2)
	(
(Ref: 7.1.2.1)
	
	(
(Ref: PP 1.3, IPM 1.3)

	4
	4.3.3, 5.X
	Software Lifecycle Data
	The developer should specify the software lifecycle data that will be produced and controlled by the software lifecycle processes.
	
	(
(Ref: 5)
	(
(Ref: 11.1)
	(
(Ref: 7.1.2.7, Table 1)
	
	(
(Ref: GP 2.2, 3.1)

	5
	4.3.3, 4.3.16
	Schedule
	The developer should describe the means to provide the relevant visibility of the activities of the software lifecycle processes so reviews can be planned.
	
	(
(Ref: 3.1.2 ; 4.1.4.2 ;

5.1)
	(
(Ref: 11.1)
	
	
	(
(Ref: PP 2.1
PMC GP 2.2, 3.1)

	6
	4.3.9, 4.3.10
	Standards
	The developer should identify the SW Requirements Standards, SW Design Standards, SW Code Standards, SW testing standards, SW integration standards and System integration standards for the project. Also, references to the standards for previously developed software, including COTS software, if those standards are different.
	
	(
(Ref: 3.1

Table A-1 line 5;

For COTS: 4.1.4.2)
	(
(Ref: 11.2)
	P
(Ref: 7.4.4)
	
	(
(Ref: GP 2.2, 3.1
PP 2.4)

	7
	4.3.3, 4.3.12, 4.3.17, 4.3.18, 7.1.X
	Software Development Environment
	The developer should state the chosen software development environment in terms of hardware and software, including:

(1) The chosen requirements development method(s) and tools to be used.

(2) The chosen design method(s) and tools to be used.

(3) The programming language(s), coding tools, compilers, linkage editors and loaders to be used.

(4) The hardware platforms for the tools to be used
	
	(
(Ref: 3.1. Table A-1 line 3)
	(
(Ref: 11.2)
	P
(Ref: 7.4.4)
	
	(
(Ref: PP 2.4
GP 2.2, 2.3, 3.1)

	8
	4.3.3, 4.3.12, 4.3.17, 4.3.18, 4.3.20, 7.2.X
	Additional considerations
	The developer should describe specific features, for example, complexity level, alternative methods of compliance, tool qualification, previously developed software, COTS software, HMI, deactivated code and product service history.
	
	(
(Ref: 4)
	(
(Ref: 11.1)
	
	
	

	9
	4.3.3, 4.3.7
	Software Integration Plan
	The developer should develop an integration plan to integrate the software units and software components into the software item. The plan should include test requirements, procedures, data responsibilities, and schedule. The plan should be documented.
	(
(Ref: 5.3.8.1)
	(
(Ref: §3.1 Table A-1 lines 1, 2, 3, 4)
	(
(Ref: 5.4.2)
	(
(Ref: 7.4.7.1)
	
	(
(Ref: PI 1.1, 1.3
Ver 1.3)

3.2
SYSTEM REQUIREMENTS ANALYSIS

ED12B/DO178B does not address system-related issues (supposed to be covered by ARP 4754). ED109/DO278 neither.
	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	4.3.1
	System Requirements Analysis
	The specific intended use of the system to be developed should be analysed to specify system requirements.

The system requirements specification should describe: functions and capabilities of the system; business, organisational and user requirements; safety, security, human-factors engineering (ergonomics), interface, operations, and maintenance requirements; design constraints and qualification requirements.

The system requirements specification should be documented.
	(
(Ref: 5.3.2.1)
	P

(Ref: 2)
	P
(Ref: 2.1.1, 2.2)
	(
(Ref: Part I-7.6,

Part II-7.2.3)
	
	(
(Ref:

RD 1.1, 2, 3.1,
3.2)

	2
	4.3.1, 4.3.15
	System Requirements Definition Criteria
	The system requirements should be specified & documented considering the criteria listed below:

a) Traceability to acquisition needs;

b) Consistency with acquisition needs;

c) Testability;

d) Feasibility of system architectural design;

e) Feasibility of operation and maintenance.
	(
(Ref: 5.3.2.2)
	P

(Ref: 2)
	P
(Ref: 2.1.1)
	P
(Ref:

Part II-7.2.2)
	
	(
[Ref:

 a) ReqM 1.4,

b) ReqM1.5

 c), d), e) RD 3.1, 3.2, 3.3, 3.4, 3.5]

3.3
SYSTEM ARCHITECTURAL DESIGN

ED12B/DO178B does not address system-related issues (supposed to be covered by ARP 4754).

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	4.3.2
	System Architecture Definition
	A top-level architecture of the system should be established. The architecture should identify items of hardware, software, and manual-operations.

It should be ensured that all the system requirements are allocated among the items. Hardware configuration items, software configuration items, and manual operations should be subsequently identified from these items.

The system architecture and the system requirements allocated to the items should be documented.
	(
(Ref: 5.3.3.1)
	P
 (Ref: 2.2)
	P
(Ref: 2.3)
	P
(Ref:

Part II-7.4.2)
	
	(
(Ref: TS 2.1, 2.2
 RD 2.2)

	2
	4.3.2, 4.3.15
	System Architecture Definition Criteria
	The system architecture and the requirements for the items should be defined & documented considering the criteria listed below.

a) Traceability to the system requirements;

b) Consistency with the system requirements;

c) Appropriateness of design standards and methods used;

d) Feasibility of the software items fulfilling their allocated requirements;

e) Feasibility of operation and maintenance.
	(
(Ref: 5.3.3.2)
	
	
	P
(Ref: Part II-7.4)
	
	(
[Ref:

ReqM 1.4,
TS 2.1, 2.2]

3.4
SOFTWARE REQUIREMENTS ANALYSIS

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	4.3.4
	Software Requirements Definition
	The developer should establish and document software requirements, including the quality characteristics specifications, described below.

a) Functional and capability specifications, including performance, physical characteristics, and environmental conditions under which the software item is to perform;

b) Interfaces external to the software item;

c) Qualification requirements;

d) Safety specifications, including those related to methods of operation and maintenance, environmental influences, and personnel injury;

e) Human-factors engineering (ergonomics) specifications, including those related to manual operations, human-equipment interactions, constraints on personnel, and areas needing concentrated human attention, that are sensitive to human errors and training;

f) Data definition and database requirements;

g) Installation and acceptance requirements of the delivered software product at the operation and maintenance site(s);

h) User documentation;

i) User operation and execution requirements;

j) User maintenance requirements.

	(
(Ref: 5.3.4.1)
	(
(Ref: 3.2

Tables A2.1, A2.2)
	(
(Ref: 5.1, 11.9)
	(
(Ref: 7.2.2.3,

7.2.2.4,

7.2.2.7=>

7.2.2.11)
	
	(
(Ref: RD 2.1, 2.3)

	2
	4.3.4
	Assurance Level Related Requirements
	Software requirements are commensurate with the allocated Assurance Level.
	
	(
(Ref: 3

A2.1, A2.2)
	(
(Ref: 5.1.2, 11.9)
	(
(Ref: 7.2.2)
	
	P
(Ref: RD 3.3)

	3
	4.3.4, 4.3.15, 4.3.20
	Software Requirements Definition Criteria
	The developer should specify & document the software requirements considering the criteria listed below.

a) Traceability to system requirements and system design;

b) External consistency with system requirements;

c) Internal consistency;

d) Testability;

e) Feasibility of software design;

f) Feasibility of operation and maintenance.
	(
(Ref: 5.3.4.2)
	(
(Ref: 3.3. Table A2.1, A2.2 , A-3 line 6)
	(
(Ref: 5.5, 11.6, 11.9)
	P
(Ref: 7.2.2.1, 7.2.2.2,

7.2.2.6)
	
	(
(Ref: RD 3.3
ReqM 1.4)

	4
	4.3.9, 4.3.10, 4.3.11, 4.3.12
	Software Requirements Standards
	Definition of methods, rules and tools to be used to develop software requirements.
	
	(
(Ref: 3.2 Tables A2.1, A2.2)
	(
(Ref: 11.6)
	(
(Ref: 7.2.2.4, 7.2.2.6)
	
	(
(Ref: RD GP 2.2, 2.3, 3.1)

	5
	4.3.7
	Software Integration Definition update
	 The developer should update the Software integration definition (including the plan & procedures) in accordance with the outcome of this phase
	(
(Ref: 5.3.5.5)
	
	
	(
(Ref: 7.4.3.2.f)
	
	(
(Ref: PI 1, PI GP 2.2, 2.3, 3.1)

3.5
SOFTWARE ARCHITECTURAL DESIGN
	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	4.3.5, 4.3.13
	Top-Level Software Architecture Definition
	The developer should transform the requirements for the software item into an architecture that describes its top-level structure and identifies the software components. It should be ensured that all the requirements for the software item are allocated to its software components and further refined to facilitate detailed design.

The architecture of the software item should be documented.
	(
(Ref: 5.3.5.1)
	(
(Ref: 3.2. Table A-2

line 3)
	(
(Ref: 5.2.2, 11.10)
	(
(Ref: 7.4.1.1, 7.4.1.2,

7.4.3.1,

7.4.3.3)
	
	(
(Ref: TS 2.1, 2.2
RD 2.2

	2
	4.3.5
	Interfaces Design
	The developer should develop and document a top-level design for the interfaces external to the software item and between the software components of the software item.
	(
(Ref: 5.3.5.2)
	(
(Ref: 3.2 Table A-2 line3)
	(
(Ref: 11.10)
	P
(Ref: 7.4.2.2.b)
	
	(
(Ref: TS 2.3)

	3
	4.3.5, 4.3.13
	Assurance Level Related Design
	The design should be commensurate with the Assurance Level.

	
	(
(Ref: 3.2

Table A-2.line 3)
	(
(Ref: 11.10)
	(
(Ref: 7.4.2)
	
	(
(Ref: TS 1.1, 1.3, 2.1, 2.2)

	4
	4.3.9, 4.3.10, 4.3.17, 4.3.18
	Software Architectural Design Standards
	Definition of the methods, rules and tools to be used to develop software architectural design.
	
	(
(Ref: 3.2 Table A-2

 line 3)
	(
(Ref: 11.7)
	(
(Ref: 7.4.3.2)
	
	(
(Ref: TS GP 2.2, 2.3, 3.1)

	5
	4.3.5
	Database Top-Level design
	The developer should develop and document a top-level design for the database.
	(
(Ref: 5.3.5.3)
	
	
	
	
	(
(Ref: TS 2.1, 2.2)

	6
	4.3.7
	Software Integration Definition update
	 The developer should update the Software integration definition (including the plan & procedures) in accordance with the outcome of this phase
	(
(Ref: 5.3.5.5)
	
	
	(
(Ref: 7.4.3.2.f)
	
	(
(Ref:
PI 1, PI GP 2.2, 2.3, 3.1)

	7
	4.3.5, 4.3.13, 4.3.14, 4.3.15, 4.3.20
	Software Architecture Definition Criteria
	The developer should design & document the architecture of the software item and the interface and database designs considering the criteria listed below.

 a) Traceability to the requirements of the software item;

b) External consistency with the requirements of the software item;

c) Internal consistency between the software components;

d) Appropriateness of design methods and standards used;

e) Feasibility of detailed design;

f) Feasibility of operation and maintenance.
	(
(Ref: 5.3.5.6)
	(
(Ref: 3.2 Table A-2

 line 3)
	(
(Ref: 5.2, 5.5, 11.7)
	P
(Ref: 7.4.2.2

=>7.4.2.11,

7.4.3.2)
	
	(
(Ref: TS 2.1, 2.2
ReqM 1.4
PI 2.1)

3.6
SOFTWARE DETAILED DESIGN

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	4.3.6
	Software Detailed Design Definition
	The developer should develop a detailed design for each software component of the software item. The software components should be refined into lower levels containing software units that can be coded, compiled, and tested. It should be ensured that all the software requirements are allocated from the software components to software units. The detailed design should be documented.
	(
(Ref: 5.3.6.1)
	(
(Ref: 3.2

Table A-2 lines 4, 5)
	(
(Ref: 11.10)
	(
(Ref:

7.4.1.4,

7.4.5.1, 7.4.5.4)
	
	(
(Ref: TS 2.1, 2.2, 3.1)

	2
	4.3.6
	Interfaces Design
	The developer should develop and document a detailed design for the interfaces external to the software item, between the software components, and between the software units. The detailed design of the interfaces should permit coding without the need for further information.

The detailed design of the interfaces should permit coding without the need for further information.
	(
(Ref: 5.3.6.2)
	P
(Ref: 3.2

 Table A-2 lines 4, .5)
	(
(Ref: 5.2.2, 11.10)
	
	
	(
(Ref: TS 2.3)

	3
	4.3.9, 4.3.10
	Software Detailed Design Standards
	Definition of the methods, rules and tools to be used to develop software detailed design.
	
	(
(Ref: 3.1 Tables A2.4 A2.5)
	(
(Ref: 11.7, 11.10)
	
	
	(
(Ref: TS GP 2.2, 2.3, 3.1)

	4
	4.3.5, 4.3.13, 4.3.14, 4.3.15, 4.3.20
	Software Detailed Design Definition Criteria
	The developer should design & document the software detailed design considering the criteria listed below.

a) Traceability to the requirements of the software item;

b) External consistency with architectural design;

c) Internal consistency between software components and software units;

d) Appropriateness of design methods and standards used;

e) Feasibility of testing;

f) Feasibility of operation and maintenance.
	(
(Ref: 5.3.6.7)
	(
(Ref:3.2

Table A-2 lines 4, 5)
	(
(Ref: 5.2.2, 5.5, 11.7)
	P
(Ref: 7.4.5.2, 7.4.5.3)
	
	(
(Ref: TS 2.1, 2.2
ReqM 1.4
PI 2.1)

	5
	4.3.5
	Database

Detailed Design
	The developer should develop and document a detailed design for the database.
	(
(Ref: 5.3.6.3)
	
	
	
	
	(
(Ref: TS 2.1, 2.2, 3.1)

	6
	4.3.7
	Software Integration Definition Update
	The developer should update the Software integration definition (including the plan & procedures) in accordance with the outcome of this phase
	(
(Ref: 5.3.6.6)
	
	
	(
(Ref:7.4.5.5)
	
	(
(Ref:
PI 1, PI GP 2.2, 2.3, 3.1)

3.7
SOFTWARE CODING

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	4.3.9, 4.3.10
	Coding Standards
	Definition of programming languages, methods, rules and tools to be used to code software.
	
	(
(Ref: 3.2

Table A-2 line 6
	(
(Ref: 11.8, 11.11)
	(
(Ref: 7.4.4.6)
	
	(
(Ref: TS GP 2.2, 2.3, 3.1)

	2
	4.3.6, 4.3.15, 4.3.9, 4.3.10, 4.3.19, 4.3.20
	Software Units Code definition Criteria
	The developer should develop software code considering the criteria listed below.

a) Traceability to the requirements and design of the software item;

b) External consistency with the requirements and design of the software item;

c) Internal consistency between unit requirements;

d) Appropriateness of coding methods and standards used;

e) Feasibility of software integration and testing;

f) Feasibility of operation and maintenance.
	(
(Ref: 5.3.7.5)
	P
(Ref: 3.7 Table A-7)
	(
(Ref: 5.3, 5.5, 11.8, 11.11)
	P
(Ref: 7.4.6.1, 7.4.7.1,

7.4.7.2)
	
	(
(Ref: TS 3.1
ReqM 1.4)

	3
	4.3.6
	Development & Documentation
	The developer should develop and document each software unit and database

	(
(Ref: 5.3.7.1)
	P
(Ref: 3.5 Table A-5 - 3.6

Table A-6)
	(
(Ref: 5.3)
	(
(Ref: 7.4.6, 7.4.7)
	
	(
(Ref: TS 3.1)

3.8
SOFTWARE INTEGRATION

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	4.3.7, 4.3.20
	Software Integration Definition Criteria
	The developer should update the integration plan considering the criteria listed below:

a) Traceability of components to the system requirements).;

b) External consistency of components with the system requirements;

c) Internal consistency;

d) Appropriateness of methods used;

e) Feasibility of operation and maintenance;
	P
(Ref: 5.3.8.5)
	
	
	P
(Ref: 7.4.8.2, 7.4.8.5)
	
	(
(Ref: TS 2.1, 3.1, 3.2
PI 1, PI GP 2.2, 3.1
PP3.1
ReqM 1.4)

	2
	4.3.9, 4.3.10
	Software Integration Standards
	Definition of the methods, rules and tools to be used to integrate software components.

Definition of methods to handle patch and deactivated code.
	
	(
(Ref: 3.6 Table A-6 line 2)
	P
(Ref: 5.4.3, 6.4.3.b)
	
	
	(
(Ref: PI 1.2
PI GP 2.2, 2.3, 3.1)

	3
	4.3.7
	Software Integration Definition Update
	The developer should update the schedule for Software Integration in accordance with the results of former verification
	(
(Ref: 5.3.7.4)
	
	
	
	
	(
(Ref:
PI 1.1)

	4
	4.3.7
	Software Integration

	The developer should integrate the software units and software components as the aggregates are developed in accordance with the integration plan. It should be ensured that each aggregate interfaces other software items and that the software item is integrated at the conclusion of the integration activity. The integration should be documented.
	(
(Ref: 5.3.8.2)
	
	
	(
(Ref: 7.4.8.3, 7.4.8.4)
	
	(
(Ref: PI 3.2, 3.3
)

3.9

SYSTEM INTEGRATION

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	4.3.3
	System Integration Definition
	The software configuration items should be integrated, with hardware configuration items, manual operations, and other systems as necessary, into the system.

The system integration should be defined & documented considering the criteria listed below:

a) Appropriateness of methods and standards used;

b) Conformance to expected results;

c) Feasibility of system integration;

d) Feasibility of operation and maintenance;

e) criteria on which system integration completion will be judged.
	(
(Ref: 5.3.10.1, 5.3.10.3)
	P
(Ref: 3.2 Table A-2

line 7)
	(
(Ref: 5.4.1, 5.4.2)
	P
(Ref: 7.5.2.1, 7.5.2.2, 7.5.2.3, 7.5.2.4, 7.5.2.5, 7.5.2.7, 7.5.2.8)
	
	
(
(Ref: PI 1.2, 1.3, 3.2, 3.3)

	2
	4.3.13, 4.3.14
	Software Compatibility with target Hardware
	Integration procedures should describe how to merge SW with HW, how to ensure SW compatibility with HW, integration environment.
	
	P
(Ref: 3.2 Table A-2

 line 7)
	(
(Ref: 5.4)
	(
(Ref: 7.5.2)
	
	(
(Ref: PI 1.3)

	3
	4.3.9, 4.3.10
	System Integration Standard
	Definition of the methods, rules and tools to be used to integrate a system: HW/SW & system components
	
	
	P
(Ref: 6.4.3.a)
	
	
	(
(Ref: PI 1.2
PI GP 2.2, 2.3, 3.1)

3.11

SOFTWARE INSTALLATION

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	4.3.8
	Software Installation Plan
	The developer should develop a plan to install the software product in the target environment as designated in the contract.

The resources and information (schedule, procedures, sequence, responsibilities) necessary to install the software product should be determined and be available.

As specified in the contract, the developer should assist the acquirer with the set-up activities.

Where the installed software product is replacing an existing system, the developer should support any parallel running activities that are required by contract.

The installation plan should be documented.
	P
(Ref: 5.3.12.1)
	
	
	(
(Ref:

Part I-7.9.1.1,

I-7.9.2.1,

I-7.9.2.3)
	
	(
(Ref:

PI 1,

PI GP 2.2,2.3, 3.1

	2
	4.3.8
	Software Installation Performance
	a) The developer should install the software product in accordance with the installation plan.

b) It should be ensured that the software code and databases initialise, execute, and terminate as specified in the contract.

c) The installation events and results should be documented.
	(
(Ref: 5.3.12.2)
	
	
	(
(Ref:

Part I-7.13.1.1,

I-7.13.2.1,

I-7.13.2.2)
	
	(
(Ref: PI 3.4)

4
OPERATION PROCESS

The Operation Process contains the objectives and tasks of the operator. The process covers the operation of the software product and operational support to users. Because operation of software product is integrated into the operation of the system, the objectives and tasks of this process refer to the system.

ED12B/DO178B, ED109/DO278 and CMMI do not cover operation.

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	4.4.1
	Process Implementation
	a) The operator should develop a plan and set operational standards for performing the activities and tasks of this process.

b) The operator should establish procedures for providing feedback.
	(
(Ref: 5.4.1)
	
	
	P
(Ref: Part I-7.15)
	
	

	2
	4.4.2
	Intended Operational Environment
	The system should be operated in its intended environment according to the user documentation.
	(
(Ref: 5.4.3)
	
	
	P
(Ref: Part I-7.15)
	
	

	3
	4.4.3
	User support
	The operator should provide assistance and consultation to the users as requested.
	(
(Ref: 5.4.4)
	
	
	
	
	

	4
	4.4.4
	Software Operation
	Procedures to operate the software should be defined, documented and executed.
	(
(Ref: 5.4.3)
	
	
	P
(Ref: Part I-7.15)
	
	

	5
	4.4.5
	Performance Monitoring
	Some means commensurate with the SWAL stringency should exist to monitor the Software performance, especially the SWAL allocated to this software, but also to provide assurance that the SWAL allocation process and criteria are correct and complete.
	
	
	
	
	
	

5
MAINTENANCE PROCESS

The Maintenance Process contains the objectives and tasks of the maintainer. This process is activated when the software product undergoes modifications to code and associated documentation due to a problem or the need for improvement or adaptation. The objective is to modify existing software product while preserving its integrity. This process includes the migration and decommissioning of the software product. The process ends with the decommissioning of the software product.
ED12B/DO178B and ED109/DO278 do not cover maintenance.
	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	4.5.1
	Process Implementation
	The maintainer should develop, document, and execute plans and procedures for conducting the activities and tasks of the Maintenance Process.
	(
(Ref: 5.5.1)
	
	
	P
(Ref: Part I-6.2.1.j ,

I-7.7,I-7.15)
	
	(
(Ref: PP 2)

	2
	
	SWAL allocation confirmation
	First the impact on safety of the problem or modification as provided by the “Problem Resolution Process” should be confirmed throughout the maintenance process.
	
	
	
	
	
	

	3
	
	SWAL satisfaction
	The maintainer should ensure that any maintenance activity does not impair the confidence that (new or old confirmed) SWAL is satisfied.

	(
(Ref: 5.5.4)
	
	
	P
(Ref: 7.8,

Part I-7.16)
	
	(
(Ref: CM 1.3, 3.2)

	4
	4.5.4
	Software Migration
	A migration plan should be developed, documented, and executed.

If a system or software product (including data) is migrated from an old to a new operational environment, it should be ensured that any software product or data produced or modified during migration are in accordance with migration requirement.
	(
(Ref: 5.5.5)
	
	
	
	
	P
(PI 3.4)

	5
	4.5.5
	SW Decommissioning
	A decommissioning plan to remove active support by the operation and maintenance organisations should be developed and documented.

An impact analysis should be performed.
	P
(Ref: 5.5.6)
	
	
	P
(Ref: Part I-7.17)
	
	

[image: image3.wmf]3

SUPPORTING LIFECYCLE PROCESSES

This clause defines the following supporting lifecycle processes:

1)
Documentation process;

2)
Configuration management process;

3)
Quality assurance process;

4)
Verification process;

5)
Validation process;

6)
Joint review process;

7)
Audit process;

8)
Problem resolution process.

The objectives and tasks in a supporting process are the responsibility of the organisation performing that process. Depending on the lifecycle phase, different organisations may be responsible for performing a process. Each organisation ensures that the process is in existence and functional.

1
DOCUMENTATION PROCESS

The Documentation Process is a process for recording information produced by a lifecycle process or activity. The process contains the set of objectives, which plan, design, develop, produce, edit, distribute, and maintain those documents needed by all concerned such as managers, engineers, and users of the system or software product.
ED109/DO278 and ED12B/DO178B do not prescribe or recommend delivering documents as such. Instead, some “Software Lifecycle Data” has to be produced as evidence.

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	5.1.1
	Process Implementation
	A plan, identifying the documents to be produced during the lifecycle of the software product, should be developed, documented, and implemented.

Document should be identified to allow searching versions (old and latest).
	(
(Ref: 6.1.1)
	(
(Ref: 3.1

 Table A-1 lines 1, 2, 3, 4)
	P
(Ref: 4.3, 11)
	(
(Ref: Part I-5.1, I-5.2.7,

I-5.2.9=>

I-5.2.11)
	
	(
(Ref: GP 2.2, 3.1
PP2.3, 2.7
 CM 1.1)

	2
	5.1.2
	Design & Development
	Each identified document should be designed in accordance with applicable documentation standards for format, content description, page numbering, figure/table placement, proprietary/security marking, packaging, and other presentation items.
	(
(Ref: 6.1.2)
	
	P
(Ref: 11)
	(
(Ref: Part I-5.2.8,

I-Annex A)
	
	(
(Ref: PP 2.3
PMC 1.4)

	3
	5.1.3
	Production
	The documents should be produced and provided in accordance with the plan. Production and distribution of documents may use paper, electronic, or other media. Master materials should be stored in accordance with requirements for record retention, security, maintenance, and backup.
	(
(Ref: 6.1.3)
	
	P
(Ref: 4.3, 11)
	P
(Ref:

Part I-5.2.11)
	
	(
(Ref: PMC 1.4)

	4
	5.1.3, 4.3.4
	Documentation (SW Requirement)
	The developer should develop and update the SW Requirement.
	(
(Ref: 5.3.4.1)
	(
(Ref: 3.2

Tables A2.1, A2.2)
	(
(Ref: 5.1, 11.9)
	(
(Ref: 7.2.2.3,

7.2.2.4,

7.2.2.7=>

7.2.2.11)
	
	(
(Ref: RD 2.1, 2.3)

	5
	5.1.3, 4.3.5
	Documentation (SW architectural design)
	The developer should develop and update SW architectural design documentation.
	(
(Ref: 5.3.5.4)
	(
(Ref: 3.2, Table A.2

line 3)
	
	
	
	(
(Ref: TS 2.1, 2.2)

	6
	5.1.3, 4.3.6
	Documentation (SW detailed design)
	The developer should develop and update SW detailed design documentation as necessary.
	(
(Ref: 5.3.6.4)
	P
(Ref: For COTS 4.1.2)
	
	
	
	(
(Ref: TS 2.1, 2.2)

	7
	5.1.3, 4.3.6
	documentation (SW coding)
	The developer should develop and update the SW coding documentation as necessary.
	(
(Ref: 5.3.7.3)
	
	
	
	
	(
(Ref: TS 3.1, 2.2)

	8
	5.1.3, 4.3.7
	Documentation (SW integration)
	The developer should develop and update the SW integration documentation as necessary.
	(
(Ref: 5.3.8.3)
	
	
	
	
	(
(Ref: PI1.1, 1.3)

	10
	5.1.3, 4.3.3, 5.2.2
	Baseline Update
	Upon successful completion of the acceptance/approval/ audits, if conducted, the developer should:

- Update and prepare the deliverable software product for System Integration, System Testing, Software Installation, or Software Acceptance Support as applicable.

- Establish a baseline for the design and code of the software item.
	(
(Ref: 5.3.9.5, 5.3.11.4)
	
	
	
	
	(
(Ref: PI 3.4
 CM 1.3)

	11
	5.1.4
	Maintenance
	The tasks, that are required to be performed when documentation is to be modified, should be performed.
	(
(Ref: 6.1.4)
	(
(Ref: 3.8

 Table A-8 lines 3, 4)
	P
(Ref: Annex A)
	
	
	(
(Ref: PMC 1.4)

2
CONFIGURATION MANAGEMENT PROCESS

The Configuration Management Process is a process of applying administrative and technical procedures throughout the software lifecycle to: identify, define, and baseline software items in a system; control modifications and releases of the items; record and report the status of the items and modification requests; ensure the completeness, consistency, and correctness of the items; and control storage, handling, and delivery of the items.

Rationale: Configuration Management ensures that assurances, for the safety of the software in the system context, are at all times derived from:

· a known executable version of the software,

· a known range of configuration data, and
· a known set of software products and descriptions that have been used in the production of that version.
Note: at the equipment level, configuration management should trace software and hardware versions to ensure that compatibility is achieved.

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	5.2.1
	Process Implementation
	A configuration management plan should be developed, documented & implemented The plan should describe:

a)- the configuration management activities;

b)- procedures and schedule for performing these activities;

c)- the organisation(s) responsible for performing these activities; and their relationship with other organisations, such as software development or maintenance;

d)- Software lifecycle environment control management (tools used to develop or verify SW)

e)- Definition of SW lifecycle data (all output) control management (identify for each output which kind of Configuration Management to set-up).

	P
(Ref: 6.2.1)
	(
(Ref: 3.1

Table A-1

 lines 1, 2, 3)
	(
(Ref: 7.1, 11.4)
	P
(Ref:

Part I-6.2.1)
	
	(
(Ref: CM 1.2,

CM GP 2.2, 2.4, 3.1)

	2
	5.2.2
	Configuration Identification
	A scheme should be established for identification of software items and their versions to be controlled for the project. For each software item and its versions, the following should be identified: the documentation that establishes the baseline; the version references; and other identification details.

The items to be configuration-identified should be drawn with its associated configuration management level.
	P
(Ref: 6.2.2)
	(
(Ref: 3.8

Table A-8

 line 1)
	(
(Ref: 7.2.1, 7.2.2)
	P
(Ref: 6.2.3.c)
	
	(
(Ref: CM 1.1, 1.3
)

	3
	5.2.2, 5.2.3
	Baseline & Configuration Item Traceability
	A baseline or configuration item should be traceable to the baseline or configuration item from which it was derived.
	
	(
(Ref: 3.8

Table A-8

 line 2)
	(
(Ref: 7.2.2.e, 7.2.2.f)
	
	
	(
(Ref: CM 1.3)

	4
	5.2.3, 5.8.4
	Configuration Control
	The following should be performed: identification and recording of change requests, problem reports; analysis and evaluation of the changes; approval or disapproval of the request; and implementation, verification, and release of the modified software item. An audit trail should exist, whereby each modification, the reason for the modification, and authorisation of the modification can be traced. Control and audit of all accesses to the controlled software items that handle safety or security critical functions should be performed.
	(
(Ref: 6.2.3)
	(
(Ref: 3.8

Table A-8

 line 3)
	(
(Ref: 7.2.3=>7.2.5)
	(
(Ref: 6.2.3.d, 6.2.3.e)
	
	(
(Ref: CM 2, 3)

	5
	5.2.3
	Software Lifecycle Environment Control
	The objective of software lifecycle environment control is to ensure that the tools used to produce the software are identified, controlled, and retrievable.
	
	(
(Ref: 3.8

Table A-8

 line 6)
	(
(Ref: 7.2.9)
	P
(Ref: 6.2.3.c)
	
	(
(Ref: CM
GP 2.6)

	6
	5.2.4
	Configuration Status Accounting
	Management records and status reports that show the status and history of controlled software items including baseline should be prepared. Status reports should include the number of changes for a project, latest software item versions, release identifiers, the number of releases, and comparisons of releases.
	(
(Ref: 6.2.4)
	(
(Ref: 3.8

Table A-8

 line 3)
	(
(Ref: 7.2.6)
	P
(Ref: 6.2.3.e)
	
	(
(Ref: CM 3.1)

	7
	5.2.5
	Configuration Evaluation
	The following should be determined and ensured: the functional completeness of the software items against their requirements and the physical completeness of the software items (whether their design and code reflect an up-to-date technical description).
	(
(Ref: 6.2.5)
	(
(Ref: 3.8

Table A-8

 line 3)
	P
(Ref: 7.2.4)
	(
(Ref: 6.2.3.d)
	
	(
(Ref: CM 3.2)

	8
	5.2.6
	Release Management & Delivery
	The release and delivery of software products and documentation should be formally controlled. Master copies of code and documentation should be maintained for the life of the software product. The code and documentation that contain safety or security critical functions should be handled, stored, packaged, and delivered in accordance with the policies of the organisations involved.

The replication process should be verified.
	P
(Ref: 6.2.6)
	(
(Ref: 3.8

Table A-8

 line 4)
	(
(Ref: 7.2.7)
	P
(Ref: 6.2.3.f)
	
	P
(Ref: CM 2

CM 1.2
)

	9
	5.2.6
	Software Load Control
	To ensure that the executable object code is loaded into the system with appropriate safeguards.
	
	(
(Ref: 3.8

Table A-8

 line 5)
	(
(Ref: 7.2.8)
	
	
	

	10
	5.2.2, 5.2.3, 5.2.6
	Software Patch Management
	Requirements to manage patch: use limitations & justification, configuration management, regression analysis.
	
	
	(
(Ref: 5.4.3)
	
	
	

3
QUALITY ASSURANCE PROCESS

The Quality Assurance Process is a process for providing adequate assurance that the software products and processes in the project lifecycle conform to their specified requirements and adhere to their established plans. To be unbiased, quality assurance needs to have organisational freedom and authority from persons directly responsible for developing the software product or executing the process in the project. Quality assurance may be internal or external depending on whether evidence of product or process quality is demonstrated to the management of the supplier or the acquirer. Quality assurance may make use of the results of other supporting processes, such as Verification, Validation, Joint Reviews, Audits, and Problem Resolution.

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	5.3.1
	Process implementation
	A quality assurance process tailored to the project should be established. The objectives of the quality assurance process should be to assure that the software products and the processes employed for providing those software products comply with their established requirements and adhere to their established plans.

A plan for conducting the quality assurance process activities and tasks should be developed, documented, implemented, and maintained (including configuration management of evidences records) for the life of the contract.
	(
(Ref: 6.3.1)
	(
(Ref: 3.1

Table A-1 lines 1, 2, 3, 4)
	(
(Ref: 8.1, 8.2, 11.5)
	P
(Ref: 7.1.2.2,

Part I-6.2.5, I-8)
	
	(
(Ref: PPQA GP 2.2, 3.1)

	2
	5.3.2
	Product assurance
	It should be assured that all the plans required by the contract are documented, comply with the contract, are mutually consistent, and are being executed as required.

It should be assured that software products and related documentation comply with the contract and adhere to the plans.

A Software Conformity review should be performed.
	P
(Ref: 6.3.2)
	(
(Ref: 3.1

Table A-1

lines 6, 7;
3.9

 Table A-9

 line 3)
	(
(Ref: 8.3)
	
	
	(
(Ref: GP 2.9
 PPQA 2)

	3
	5.3.3
	Process assurance
	It should be assured that those software lifecycle processes (supply, development, operation, maintenance, and supporting processes including quality assurance) employed for the project comply with the contract and adhere to the plans.

It should be assured that the internal software engineering practices, development environment, test environment, and libraries comply with the contract.
	(
(Ref: 6.3.3)
	(
(Ref: 3.9 Table A-9 line 1)
	(
(Ref: 8.2)
	
	
	(
(Ref: GP 2.9
PPQA 1)

4
VERIFICATION PROCESS

The Verification Process is a process for determining whether the software products of an activity fulfil the requirements or conditions imposed on them in the previous activities. For cost and performance effectiveness, verification should be integrated, as early as possible, with the process (such as supply, development, operation, or maintenance) that employs it. This process may include analysis, review and test.

This process may be executed with varying degrees of independence. The degree of independence may range from the same person or different person in the same organisation to a person in a different organisation with varying degrees of separation.

In the case where the process is executed by an organisation independent of the supplier, developer, operator, or maintainer, it is called Independent Verification Process (Confirmation by examination of evidence that a product, process or service, fulfils specified requirements).

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	5.4.X
	Process implementation
	a) Based upon the scope, magnitude complexity, criticality analysis, target lifecycle activities and software products requiring verification should be determined.

b) Verification activities and tasks, including associated methods, techniques, and tools for performing the tasks, should be selected for the target lifecycle activities and software products.

c) Based upon the verification tasks as determined, a verification plan should be developed, documented and implemented.
	(
(Ref: 6.4.1)
	(
(Ref: 3.1 Table A-1 lines 1, 2, 3, 4)
	(
(Ref: 6.1, 11.3)
	(
(Ref: 7.4.1.5, 7.9.2,

Part I-7.4,

I-7.6,I-7.18)
	
	(
(Ref: Ver 1
Ver GP 2.2, 3.1
)

	2
	5.4.X
	Verification
	According to some criteria to be defined in the verification plan, the following activities are subject to verification: Contract, Process, Requirements, Design, Source Code, Executable Code, Data, Verification Process Outputs, Integration, Documentation.
	P
(Ref: 6.4.2)
	P
(Ref: 3.1 Table A-1 lines 1, 2, 3, 4)
	P
(Ref: AnnexA-3 =>Annex A-7, 6.2, 6.3, 6.4)
	P
(Ref: 7.9.2)
	
	(
(Ref: Ver)

4.1
PROCESS IMPLEMENTATION

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	5.4.2, 5.4.7
	Criticality Evaluation criteria
	A determination should be made if the project warrants a verification effort and the degree of organisational independence of that effort needed. The project requirements should be analysed for criticality. Criticality may be gauged in terms of:

a) The potential of an undetected error in a system or software requirement for causing death or personal injury, mission failure, or financial or catastrophic equipment loss or damage;

b) The maturity of and risks associated with the software technology to be used;

c) Availability of funds and resources.
	(
(Ref: 6.4.1.1)
	(
(Ref: 2.1)
	(
(Ref: 2.2, 2.3.3, Annex A)
	(
(Ref: Part I-7.4,

I-7.6)
	
	(
(Ref: Ver 1.3)

	2
	5.4.X
	Verification Process Implementation
	If the project warrants a verification effort, a verification process should be established to verify the software product.
	(
(Ref: 6.4.1.2)
	(
(Ref: 3.4, 3.5, 3.7)
	(
(Ref: 6)
	(
(Ref: 7.9.2.1=>7.9.2.7,Part I-7.18.1)
	
	(
(Ref: Ver GP 2.2, 3.1))

	3
	5.4.7
	Verification Organisation Independence
	If the project warrants an independent verification effort, a qualified organisation responsible for conducting the verification should be selected. This organisation should be assured of the independence and authority to perform the verification activities.
	(
(Ref: 6.4.1.3)
	P
(Ref: 3.1.1)
	P
(Ref: Annex A, 11.3.b)
	(
(Ref: 7.9,

Part I-7.18.2.3)
	
	P
(Ref: Ver GP 2.3, 2.4, 2.7)

	4
	5.4.2
	Verification Environment Definition
	Based upon the scope, magnitude complexity, criticality analysis, target lifecycle activities and software products requiring verification should be determined. Verification activities and tasks, including associated methods, techniques, and tools for performing the tasks, should be selected for the target lifecycle activities and software products.
	(
(Ref: 6.4.1.4)
	(
(Ref: 3.1 Table A-1

 line 4)
	(
(Ref: Annex A, 11.3.c/d)
	(
(Ref: 7.9.2.2)
	
	(
(Ref: Ver 1.2, GP 2.2, 2.3, 3.1)

	5
	5.4.2
	Transition Criteria
	All essential information from a phase of the software lifecycle needed for the correct execution of the next phase should be available and verified.
	
	(
(Ref: 3.1 Table A-1

 line 2)
	(
(Ref: 11.3.e)
	(
(Ref: 7.9.2.6)
	
	(
(Ref: PP 1.3, PMC 1
IPM 1.3, 1.4)

	6
	5.4.2
	Verification Plan
	Based upon the verification tasks as determined, a verification plan should be developed and documented. The plan should address the lifecycle activities and software products subject to verification, the required verification tasks for each lifecycle activity and software product, and related resources, responsibilities, and schedule. The plan should address procedures for forwarding verification reports to the acquirer and other involved organisations.
	(
(Ref: 6.4.1.5)
	(
(Ref: 3.1 Table A-1 lines 1, 2, 3, 4)
	(
(Ref: 11.3)
	(
(Ref: 7.9.2.1,

Part I-7.18.2.1)
	
	(
(Ref: Ver GP 2.2, 3.1)

	7
	5.4.2
	Verification Results
	The verification plan should be implemented. Problems and non-conformances detected by the verification effort should be entered into the Problem Resolution Process. All problems and non-conformances should be resolved. Results of the verification activities should be made available to the acquirer and other involved organisations.
	(
(Ref: 6.4.1.6)
	(
(Ref: 3.9 Table 9

 Line 1)
	(
(Ref: 6.2.e)
	(
(Ref: 7.9.2)
	
	(
(Ref: Ver 2, 3, Ver GP 2.7, 2.8
CM 2.1
PMC 2)

4.2
VERIFICATION

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	5.4.2
	Contract Verification
	The contract should be verified considering the criteria listed below:

a) The supplier has the capability to satisfy the requirements.

b) The requirements are consistent and cover user needs.

c) Adequate procedures for handling changes to requirements and escalating problems are stipulated.

d) Procedures and their extent for interface and co-operation among the parties are stipulated, including ownership, warranty, copyright and confidentiality.

e) Acceptance criteria and procedures are stipulated in accordance with requirements.
	(
(Ref: 6.4.2.1)
	(
(Ref: 3.10

 Table A-10

 lines 1, 2, 3)
	
	
	
	(
(Ref: all) PPQA 1, Ver 2
a) SAM 1.2,
b) ReqM 1.1,
RD 3.3, 3.4, 3.5
c) ReqM 1.3
PMC GP 2.2, 2.4, 3.1, 2.7
d) IPM 2
e) Ver 1.3)

	2
	5.4.2
	Process Verification
	The process should be verified considering the criteria listed below:

a) Project planning requirements are adequate and timely.

b) Processes selected for the project are adequate, implemented, being executed as planned, and compliant with the contract.

c) The standards, procedures, and environments for the project's processes are adequate.

d) The project is staffed and personnel trained as required by the contract.
	(
(Ref: 6.4.2.2)
	(
(Ref: 3.3

 Table A-3,

 3.4

 Table A-4,

3.7

 Table A-7)
	
	
	
	(
(Ref: all) Ver GP 2.2, 3.1
a) ReqM 1.5,

PP 3.1, 3.2
b) PP 3.1,

 IPM 1.1, 1.3, PMC1.1, Ver GP 2.8, PPQA 1, Ver GP 2.9
c) PP 3.1
d) PP 2.4, 2.5
Ver GP 2.3, 2.5)

	3
	5.4.1
	System Requirements Verification
	The requirements should be verified considering the criteria listed below:

a) The system requirements are consistent, feasible, and testable.

b) The system requirements have been appropriately allocated to hardware items, software items, and manual operations according to design criteria.

c) The system requirements are consistent, feasible and testable.
	(
(Ref: 6.4.2.3)
	
	
	
	
	(
(Ref: all) Ver 2
a, c) RD 3.3,

b) Ver 2
d)
Ver 1.3, 2, 3
e) ReqM 1.5, RD 3.3
f) RD 3.3, 3.5
g) None

	4
	5.4.5
	Architectural Design Verification
	The design should be verified considering the criteria listed below:

a) The design is correct and consistent with and traceable to requirements.

c) Selected design can be derived from requirements.

f) Design conforms to Design standards
	(
(Ref: 6.4.2.4)
	(
(Ref: 3.4

Table A-4

 lines 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 Over-compliant in line 13) (partitioning)
	(
(Ref: Annex A-4, 6.3.3)
	(
(Ref: 7.9.2.9)
	
	(
(Ref: all) Ver 1.3, 2
a) TS 1.1, 2.1
c) TS1.1,1.3,2.1

,ReqM1.4

f) TS 2.1)

	5
	5.4.5
	Detailed design Verification
	The design should be verified considering the criteria listed below:

b) The design implements proper sequence of events, inputs, outputs, interfaces, logic flow, allocation of timing and sizing budgets, and error definition, isolation, and recovery.

d) The design implements safety, and other critical requirements correctly as shown by suitably rigorous methods.

e)No conflict exist between software design and the HW/SW features of the target computer (initialisation, asynchronous operation, interruptions)

f) Design conforms to Design standards

	(
(Ref: 6.4.2.4)
	(
(Ref: 3.4

Table A-4

 lines 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 Over-compliant in line 13) (partitioning)
	(
(Ref: Annex A-4, 6.3.3)
	(
(Ref: 7.9.2.9)
	
	(
[Ref: Ver 1.3, 2
TS 2.1

	6
	5.4.6
	Source Code Verification
	The source code should be verified considering the criteria listed below:

a) The code is traceable to design and requirements, testable, correct, and compliant with requirements and coding standards.

b) The code implements proper event sequence, consistent interfaces, correct data and control flow, completeness, appropriate allocation timing and sizing budgets, and error definition, isolation, recovery, stack usage, exception handling, interrupt conflict, ….

c) Selected code can be derived from design or requirements.

d) The code implements safety, security, and other critical requirements correctly as shown by suitably rigorous methods.

e) Source Code conforms to Code standards

f) Traceability to requirements
	(
(Ref: 6.4.2.5)
	(
(Ref: 3.5

Table A-5

 lines 1, 2, 3, 4, 5, 6)
	(
(Ref: Annex A-5)
	(
(Ref: 7.9.2.12)
	
	(
(Ref: Ver 1.3, 2
TS 3.1
 ReqM 1.4)

	7
	5.4.8
	Executable Code Verification
	The Executable Code should be verified (traceability to requirements).
	
	(
(Ref: 3.6

Table A-6

lines 1, 2, 3, 4, 5 Over-compliant)
	(
(Ref: Annex A-6)
	
	
	(
(Ref: TS 3.1
ReqM 1.4
Ver 3)

	8
	5.4.6
	Software Units Test Definition
	The developer should define and document test requirements and schedule for testing software units. The test requirements should include stressing the software unit at the limits of its requirements.
	(
(Ref: 5.3.6.5)
	(
(Ref: 3.6.3)
	
	(
(Ref: 7.4.5.4)
	
	(
(Ref: TS 3.1, Ver 1.3)

	9
	5.4.5, 5.4.6
	Module Testing Standards
	Definition of methods, rules and tools to be used to test software modules (unit testing).
	
	P
(Ref: 3.6

 Table A-6

 lines 3, 4)
	P
(Ref: 6.4.3.c)
	
	
	(
(Ref: TS GP 2.2, 2.3, 3.1, Ver 1.2)

	10
	5.4.12
	Development & Documentation
	The developer should develop and document tests procedures and data for testing each software unit and database
	(
(Ref: 5.3.7.1)
	P
(Ref: 3.5

 Table A-5;

3.6

 Table A-6)
	(
(Ref: 5.3)
	(
(Ref: 7.4.6, 7.4.7)
	
	(
(Ref: TS 3.1, Ver 1.3)

	11
	5.4.5, 5.4.6
	Software Units Tests definition Criteria
	The developer should develop software test considering the criteria listed below.

a) Traceability to the requirements and design of the software item;

b) External consistency with the requirements and design of the software item;

c) Internal consistency between unit requirements;

d) Test coverage of units;

	(
(Ref: 5.3.7.5)
	P
(Ref: 3.7

Table A-7)
	(
(Ref: 5.3, 5.5, 11.8, 11.11)
	P
(Ref: 7.4.6.1, 7.4.7.1,

7.4.7.2)
	
	(
(Ref: TS 3.1
ReqM 1.4
Ver 1.3, 2)

	12
	5.4.5, 5.4.6
	Software Units Testing
	The developer should test each software unit and database ensuring that it satisfies its requirements. The test results should be documented.
	(
(Ref: 5.3.7.2)
	(
(Ref: 3.6

 Table A-6

 lines 3, 4, 5)
	
	(
(Ref: 7.4.7.1, 7.4.7.3)
	
	(
(Ref: TS 3.1, Ver 3)

	13
	5.4.4
	Integration Verification
	The integration should be verified considering the criteria listed below:

a) The software components and units of each software item have been completely and correctly integrated into the software item.

b) The hardware items, software items, and manual operations of the system have been completely and correctly integrated into the system.

c) The integration tasks have been performed in accordance with an integration plan.

d) Linking and loading data and memory map

e) Incorrect HW addresses

f) Memory overlaps

g) Missing SW components.
	(
(Ref: 6.4.2.6)
	P
(Ref: 3.5

 Table A-5

 line 7)
	(
(Ref: 6.3.5)
	(
(Ref: 7.9.2.10,

7.9.2.11)
	
	 P
(Ref: all) Ver 2, 3
a,b) PI 3.1
c) PI GP 2.9
d, e,f) Ver 1.3
g) PI 3.2)

	14
	5.4.3
	Software Requirement
	The developer should conduct Software requirement verification. It should be ensured that the implementation of each software requirement is tested for compliance. The verification results should be documented.

The requirements should be verified considering the criteria listed below:

a) The software requirements related to safety, security, and criticality are correct as shown by suitably rigorous methods.

b)No conflict exist between software requirements and the HW/SW features of the target computer (system response time, Input/output HW)

c) Requirements conform to requirements standards

d)Algorithms are accurate and correct.

	(
(Ref: 6.4.2.3, 5.3.9)
	(
(Ref: 3.3

 Table A-3

 lines 1, 2, 3, 4, 5, 6, 7)
	P
(Ref: Annex A-3, 6.1.a, 6.3.1, 6.3.2)

(Because only Software requirements not System requirements)
	(
(Ref: 7.9.2.8)
	
	(
(Ref: Ver 3)

	15
	5.4.12
	Software Verification Evaluation
	The developer should evaluate the design, code, tests, test results, and user documentation considering the criteria listed below. The results of the evaluations should be documented.

a) Test coverage of the requirements of the software item;

b) Conformance to expected results;

c) Feasibility of system integration and testing, if conducted

d) Feasibility of operation and maintenance.
	(
(Ref: 5.3.9.3)
	
	
	(
(Ref: 7.7.2.4, 7.7.2.6)
	
	(
(Ref: TS 2.1, 3.1
Ver 1.3)

	17
	5.4.1
	System Verification Evaluation Criteria
	The system verification should be defined & documented considering the criteria listed below.

a) Test coverage of system requirements;

b) Conformance to expected results;

c) Feasibility of operation and maintenance.
	(
(Ref: 5.3.11.2)
	P
(Ref: 3.7

Table A-7

 lines 2, 3)
	P
(Ref: 2.7)
	(
(Ref: Part I-7.8, I-7.14,

Part II-7.7.2.3,

II-7.7.2.5=>

II-7.7.2.7)
	
	(
(Ref: Ver 1.3, Val 1.3
Ver 3
Val 2)

	18
	5.4.12
	System Verification Evaluation
	It should be ensured that the implementation of each system requirement is tested for compliance and that the system is ready for delivery. The qualification testing results should be documented.
	(
(Ref: 5.3.11)
	
	
	(
(Ref:

Part I-7.8, I-7.14,

Part II-7.7)
	
	(
(Ref: Ver 3, Val 2
ReqM 1.4
Ver GP 2.9)

	19
	5.4.3
	Operational Testing
	For each release of the software product, the operator should perform operational testing, and, on satisfying the specified criteria, release the software product for operational use.
	(
(Ref: 5.4.2)
	
	
	P
(Ref: Part I-7.15)
	
	(
(Ref: Val 2
PI 3.4)

	20
	5.4.3, 5.4.9
	Adaptation data verification
	Adaptation data should be verified

	
	(
(Ref: 3.2

Table A-2 line 8)
	
	
	
	(
(Ref Ver, Val)

	21
	5.4.9
	Data Verification
	Data structures, application data modifiable parameters, plant interfaces and all communications interfaces should be verified.

	
	
	
	(Ref: 7.9.2.13)
	
	(Ref:

Ver 1.3, 2
TS 3.1
PI 2.2)

	22
	5.4.12
	Documentation Verification
	The documentation should be verified considering the criteria listed below:

a) The documentation is adequate, complete, and consistent.

b) Documentation preparation is timely.

c) Configuration management of documents follows specified procedures.
	(
(Ref: 6.4.2.7)
	
	
	P
(Ref: Part I-5.2)
	
	(
(Ref: a) Ver 2
b) PI GP 2.8, 2.9
c) CM 3,

GP2.6)

	23
	5.4.12
	Verification Process Outputs Verification
	Test cases, test procedures and test results should be verified.
	
	(
(Ref: 3.7

 Table A-7

 lines 1, 2, 3, 4, 5, 6, 7, 8 Over-compliant)
	(
(Ref: Annex A-7, 6.3.6, 6.4.4)
	
	
	(
(Ref: Ver 1.3, 2)

	24
	5.4.2
	Verification of retrieval & release process
	The software retrieval and release process should be verified.
	
	
	
	
	
	

5
VALIDATION PROCESS

The Validation Process is a process for determining whether the requirements and the final, as-built system or software product fulfils its specific intended use. Validation may be conducted in earlier stages. This process may be conducted as a part of Software Acceptance Support.

This process may be executed with varying degrees of independence. The degree of independence may range from the same person or different person in the same organisation to a person in a different organisation with varying degrees of separation. In the case where the process is executed by an organisation independent of the supplier, developer, operator, or maintainer, it is called Independent Validation Process (Confirmation by examination and provision of objective evidence that the particular requirements for a specific intended use are fulfilled (usually used for internal validation of the design)).

ED109/DO278 and ED12B/DO178B do not cover this activity, because these standards are Approval/Certification oriented. Consequently, Validation objectives, as described here after, can be considered as covered by Approval/Certification.

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	5.5.1
	Process implementation
	A validation process should be established to validate the system or software product. Validation tasks, including associated methods, techniques, and tools for performing the tasks, should be selected.

A validation plan should be developed, documented and implemented.
	(
(Ref: 6.5.1)
	
	
	(
(Ref: 7.3, 7.7

Part I-7.8, I-7.14,

I-8)
	
	(
(Ref: Val 1.2,

Val GP 2.2, 3.1)

	2
	5.5.2, 5.5.3, 5.5.4, 5.5.5, 5.5.6, 5.5.7
	Validation
	Prepare selected test requirements, test cases, and test specifications for analysing test results.

Ensure that these test requirements, test cases, and test specifications reflect the particular requirements for the specific intended use.

Test and validate the software product as appropriate in selected areas of the target environment.
	(
(Ref: 6.5.2)
	
	
	(
(Ref: 7.3.2, 7.7.2)
	
	(
(Ref: a,b) Val 1.1, 1.3
c) Val 2)

6
JOINT REVIEW PROCESS

The Joint Review Process is a process for evaluating the status and products of an activity of a project as appropriate. Joint reviews are at both project management and technical levels and are held throughout the life of the contract. This process may be employed by any two parties, where one party (reviewing party) reviews another party (reviewed party).

ED109/DO278, ED 12B/DO 178B and IEC 61508 do not define a specific process for Joint Review objectives. However, reviews are part of their Verification process.

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	5.6.1
	Process implementation
	Periodic reviews should be held at predetermined milestones as specified in the project plan(s).

The review results should be documented and distributed.
	(
(Ref: 6.6.1)
	P
(Ref: 3.9 Table A-9 Line 3 partial)
	P
(Ref: 6, 8.3)
	P
(Ref:

Part I-6.2.1.b,

 I-7.18.1)
	
	(
(Ref: PP 2.1, 2.6
PMC 1.6, 1.7)

	2
	5.6.2
	Project management reviews
	Project status should be evaluated relative to the applicable project plans, schedules, standards, transition criteria and guidelines.
	(
(Ref: 6.6.2)
	P
(Ref: 3.9 Table A-9 Line 1 partial)
	P
(Ref: 4.6, 8.2.b/c)
	P
(Ref: 7.3.2.4,

Part I-6.2.3)
	
	(
(Ref: PMC 1)

	3
	5.6.3
	Technical reviews
	Technical reviews should be held to evaluate the software products or services under consideration.
	(
(Ref: 6.6.3)
	P
(Ref: 3.9 Table A-9 Line 3 partial)
	(
(Ref: 6, 8.3)
	(
(Ref: 7.2.2.4, 7.4.1.2, 7.4.6.2, 7.4.4.5,

Part I-5.2.11)
	
	(
(Ref: PMC 1.6 , 1.7)

	4
	5.6.3
	Software Requirements Joint Review
	The developer should conduct joint review(s) in accordance with Joint Review Process. Upon successful completion of the review(s) a baseline for the requirements of the software item should be established
	(
(Ref: 5.3.4.3)
	
	
	
	
	(
(Ref: PMC 1.6, 1.7
CM 1.3)

	5
	5.6.3
	Software Architecture Joint Review
	The developer should conduct joint review(s) in accordance with Joint Review Process.
	(
(Ref: 5.3.5.7)
	
	
	
	
	(
(Ref: PMC 1.6, 1.7)

	6
	5.6.3
	Software Detailed Design Joint Review
	The developer should conduct joint review(s) in accordance with Joint Review Process.
	(
(Ref: 5.3.6.8)
	
	
	
	
	(
(Ref: PMC 1.6, 1.7)

	7
	5.6.3
	Code Joint Review
	The developer should conduct joint review(s) in accordance with Joint Review Process.
	
	
	
	
	
	(
(Ref: PMC 1.6, 1.7)

	8
	5.6.3
	Software Integration Joint Review
	The developer should conduct joint review(s) in accordance with Joint Review Process.
	(
(Ref: 5.3.8.6)
	
	
	
	
	(
(Ref: PMC 1.6, 1.7)

7
AUDIT PROCESS

The Audit Process is a process for determining compliance with the requirements, plans, and contract as appropriate. This process may be employed by any two parties, where one party (auditing party) audits the software products or activities of another party (audited party).

ED109/DO278 and ED 12B/DO 178B do not define a specific process for Audit. However, audits are part of Software Quality Assurance process.

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	5.7.1
	Process implementation
	a) Audits should be held at predetermined milestones as specified in the project plan(s).

b) After completing an audit, the audit results should be documented and provided to the audited party.
	(
(Ref: 6.8.1)
	
	P
(Ref: 8.2.d, 11.19)
	P
(Ref:

Part I-6.2.1.k, 7.8.2.2,

Part I-7.7.2.1.c, I-7.15.2.3)
	
	(
(Ref: .GP 2.7, 2.9)

	2
	5.7.2, 5.7.3, 5.7.4, 5.7.5
	Software Audit
	Audits should be conducted to ensure that:

a) As-coded software products (such as a software item) reflect the design documentation.

b) The acceptance review and testing requirements prescribed by the documentation are adequate for the acceptance of the software products.

c) Test data comply with the specification.

d) Software products were successfully tested and meet their specifications.

e) Test reports are correct and discrepancies between actual and expected results have been resolved.

f) User documentation complies with standards as specified.

g) Activities have been conducted according to applicable requirements, plans, and contract.

h) The costs and schedules adhere to the established plans.

	(
(Ref: 6.8.2)
	
	P
(Ref: 8.2.d)
	P
(Ref: 6.2.3.e)
	
	(
(Ref: CM 3.2
a) TS 3.1, Ver 2
b) Ver 1.1, Ver 2
c) Ver 1.3, Ver 2
d) Ver 2, 3, PMC 2, CM 2.1, 3.2
e) Ver 3, PMC 2, CM 2.1, 3.2
f) TS 3.2, Ver 2
g) GP 2.9
h) PMC 1.1)

8
PROBLEM RESOLUTION PROCESS

The Problem Resolution Process is a process for analysing and resolving the problems (including non-conformances), whatever their nature or source, that are discovered during the execution of development, operation, maintenance, or other processes. The objective is to provide a timely, responsible, and documented means to ensure that all discovered problems are analysed and resolved and trends are recognised.
	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	5.8.1
	Process implementation
	A problem resolution process should be established for handling all problems (including non-conformances) detected in the software products and activities.
	(
(Ref: 6.9.1)
	(
(Ref: 3.8

Table A-8 line 3)
	(
(Ref: 7, 11.17)
	(
(Ref: 7.8,

Part I-6.2.1,

I-7.16)
	
	(
(Ref: PMC GP 2.2,3.1)

	2
	5.8.2
	Problem resolution
	When problems (including non-conformances) have been detected in a software product or an activity, a problem report should be prepared to describe each problem detected. The problem report should be used as part of a closed-loop process: from detection of the problem, through investigation, analysis and resolution of the problem and its cause, and onto trend detection across problems.

	(
(Ref: 6.9.2)
	(
(Ref: 3.8

 Table A-8 line 3)
	(
(Ref: 7.2, 11.17)
	(
(Ref: 7.8.2)
	
	(
(Ref: PMC 2
CAR)

	3
	5.8.3
	Problem & Modification Analysis

	a) Problem report or modification request should be analysed for its impact on the organisation, the existing system, and the interfacing systems.

b) In particular safety impact should be analysed in order to assess the consequences and severity of such a change/modification to ensure that its anomalous behaviour does not lead to consequences, which are not compatible with the initial SW AL.
	(
(Ref: 5.5.2 ; 6.9.1)
	
	
	P
(Ref: 7.8,

Part I-7.8,

I-7.15)
	
	(
(Ref:

ReqM 1.3
CM 2)

	4
	5.2.3, 5.8.4
	Problem Report Configuration Management
	Problem report should be put under configuration management.
	(
(Ref: 6.2.3)
	(
(Ref: 3.8

Table A-8

 line 3)
	(
(Ref: 7.2.3=>7.2.5)
	(
(Ref: 6.2.3.d, 6.2.3.e)
	
	(
(Ref: CM 2, 3)

These process objectives are part of Software Configuration Management for ED109/DO278 and ED12B/DO178B.

[image: image4.wmf]4

ORGANISATIONAL LIFECYCLE PROCESSES

This clause defines the following organisational lifecycle processes:

1)
Management process;

2)
Infrastructure process;

3)
Improvement process;

4)
Training process.

The objectives and tasks in an organisational process are the responsibility of the organisation using that process. Depending on the lifecycle phase, different organisations may be responsible for performing a process. Each organisation ensures that the process is in existence and functional.

1
MANAGEMENT PROCESS

The Management Process contains the generic objectives and tasks, which may be employed by any party that has to manage its respective processes). The manager is responsible for product management, project management, and task management of the applicable process(es), such as the acquisition, supply, development, operation, maintenance, or supporting process.

ED109/DO278, ED-12B/DO-178 B and IEC-61508 do not provide generic requirements for management. That is why all requirements concerning management are referenced in the related process, for example planning objectives of the supplier are referenced in Supplier Process – Planning (cf : 3.4).

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	6.1.1
	Initiation & scope definition
	The management process should be initiated by establishing the requirements of the process to be undertaken.

The manager should establish the feasibility of the process by checking that the resources (personnel, materials, technology, and environment) required to execute and manage the process are available, adequate, and appropriate and that the time-scales to completion are achievable.

	(
(Ref: 7.1.1)
	
	
	
	
	(
(Ref: a) GP 2.2, 3.1
PP2.4
b) PP 3.2)

	2
	6.1.2
	Planning
	The manager should prepare the plans for execution of the process. The plans associated with the execution of the process should contain descriptions of the associated activities and tasks and identification of the software products that will be provided. These plans should include, but are not limited to, the following:

- Schedules for the timely completion of tasks;

- Estimation of effort;

- Adequate resources needed to execute the tasks;

- Allocation of tasks;

- Assignment of responsibilities;

- Quantification of risks associated with the tasks or the process itself;

- Quality control measures to be employed throughout the process;

- Costs associated with the process execution;

- Provision of environment and infrastructure.

	(
(Ref: 7.1.2)
	
	
	
	
	(
(Ref: all) PP1, 2
GP 2.2, 3.1
b) PP 2.1
c) PP 1.4
d) PP 2.4, 2.5
e) GP 2.3, 2.4
f) GP 2.4
g) PP 2.2
RskM 2.2
h) M&A 1
PMC GP 2.2, 3.1

 Ver GP 2.2, 3.1
i) PP 1.4
j) PP 2.4
GP 2.3)

	3
	6.1.3
	Execution & control
	The manager should initiate the implementation of the plan to satisfy the objectives and criteria set, exercising control over the process.

The manager should monitor the execution of the process, providing both internal reporting of the process progress and external reporting to the acquirer as defined in the contract.

The manager should investigate, analyse, and resolve the problems discovered during the execution of the process.

	(
(Ref: 7.1.3)
	
	
	
	
	(
(Ref: a) PMC
GP 2.8
b) PMC 1
c) PMC 2)

	4
	6.1.4
	Review & evaluation
	a) The manager should ensure that the software products and plans are evaluated for satisfaction of requirements.

b) The manager should assess the evaluation results of the software products, activities, and tasks completed during the execution of the process regarding the achievement of the objectives and completion of the plans.
	(
(Ref: 7.1.4)
	
	
	
	
	(
(Ref: a) ReqM 1.5
b) PMC)

	5
	6.1.5
	Closure
	When all software products, activities, and tasks are completed, the manager should determine whether the process is complete taking into account the criteria as specified in the contract or as part of organisation's procedure.

The manager should check the results and records of the software products, activities, and tasks employed for completeness. These results and records should be archived in a suitable environment as specified in the contract.
	(
(Ref: 7.1.5)
	
	
	
	
	(
(Ref: a) IPM 1.3
b) PMC 1.1, 1.6, 1.7,
 GP 2.8
c) PMC 1.4)

2
INFRASTRUCTURE PROCESS

The Infrastructure Process is a process to establish and maintain the infrastructure needed for any other process. The infrastructure may include hardware, software, tools, techniques, standards, and facilities for development, operation, or maintenance.

	
N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	6.2.1
	Process implementation
	The infrastructure should be defined and documented to meet the requirements of the process (e.g. development or verification) employing the infrastructure, considering the applicable procedures, standards, tools, and techniques.

The establishment of the infrastructure should be planned and documented.
	(
(Ref: 7.2.1)
	P
(Ref: 3.1 Table A-1

 line 3 partial)
	(
(Ref: 4.4, 11.2)
	P
(Ref: 6.2.3.c, 7.4.4)
	
	(
(Ref: a) PP 2.4
GP 2.3
b) PP 2)

	2
	6.2.2
	Establishment of the infrastructure
	The configuration of the infrastructure should be planned and documented. Functionality, performance, safety, security, availability, space requirements, equipment, costs, and time constraints should be considered.
	(
(Ref: 7.2.2)
	P
(Ref: 3.8 Table A-8

 line 6 partial)
	(
(Ref: 4.4, 7.2.9, 11.15)
	P
(Ref: 8.3)
	
	(
(Ref: CM 1.1,

CM GP 2.2, 3.1)

	3
	6.2.3
	Maintenance of the infrastructure
	The infrastructure should be maintained, monitored, and modified as necessary to ensure that it continues to satisfy the requirements of the process (e.g. development or verification)) employing the infrastructure. As part of maintaining the infrastructure, the extent to which the infrastructure is under configuration management should be defined.
	(
(Ref: 7.2.3)
	(
(Ref: 3.8 Table A-8

 line 6
	(
(Ref: 7.2.9)
	P
(Ref: 6.2.3.c)
	
	(
(Ref: PMC 1.1
CM)

3
IMPROVEMENT PROCESS

The Improvement Process is a process for establishing, assessing, measuring, controlling, and improving a software lifecycle process.

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	6.3.1
	Process implementation
	The organisation should establish a suite of organisational processes for all software lifecycle processes as they apply to its business activities. The processes and their application to specific cases should be documented in organisation's publications. As appropriate, a process control mechanism should be established to develop, monitor, control, and improve the process(es).
	(
(Ref: 7.3.1)
	
	
	
	
	(
(Ref: OPD 1.3, 2.1, OPD GP 2.6
OPF)

	2
	6.3.2
	Process assessment
	A process assessment procedure should be developed, documented, and applied. Assessment records should be kept and maintained.

The organisation should plan and carry out reviews of the processes at appropriate intervals to ensure their continuing suitability and effectiveness in the light of assessment results.
	(
(Ref: 7.3.2)
	
	
	
	
	(
(Ref: OPF 1.2
)

	3
	6.3.3
	Process improvement
	The organisation should effect such improvements to its processes as it determines to be necessary as a result of process assessment and review. Process documentation should be updated to reflect improvement in the organisational processes.
	(
(Ref: 7.3.3)
	
	
	
	
	(
(Ref: OPF 1.3, 2.1, 2.2)

ED109/DO278, ED 12B/DO 178B and IEC 61508 do not cover this process.

4
TRAINING PROCESS

The Training Process is a process for providing and maintaining trained personnel. The acquisition, supply, development, operation, or maintenance of software products is largely dependent upon knowledgeable and skilled personnel. For example: developer personnel should have essential training in software management and software engineering. It is, therefore, imperative that personnel training be planned and implemented early so that trained personnel are available as the software product is acquired, supplied, developed, operated, or maintained.

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	6.4.1
	Process implementation
	A review of the project requirements should be conducted to establish and make timely provision for acquiring or developing the resources and skills required by the management and technical staff. The types and levels of training and categories of personnel needing training should be determined. A training plan, addressing implementation schedules, resource requirements, and training needs, should be developed and documented.
	(
(Ref: 7.4.1)
	
	
	(
(Ref:

Part I-6.2.1,

I-Annex B)
	
	(
(Ref: PP 2.5
PMC 1.1
GP 2.5
OT 1.1, 1.3)

	2
	6.4.2
	Training material development
	Training manuals, including presentation materials used in providing training, should be developed.
	(
(Ref: 7.4.2)
	
	
	
	
	(
(Ref: OT 1.4)

	3
	6.4.3
	Training plan implementation
	The training plan should be implemented to provide training to personnel. Training records should be maintained.
	(
(Ref: 7.4.3)
	
	
	(
(Ref:

Part I-6.2.2,

I-Annex B)
	
	(
(Ref: PP 2.5
OT 2.1, 2.2)

ED109/DO278 and ED 12B/DO 178B do not cover this process.

This page is intentionally left blank

[image: image5.wmf]5

ADDITIONAL ANS SOFTWARE LIFECYCLE OBJECTIVES

These additional software lifecycle objectives are the following:

1) Software Development Environment

2)
Commercial Off The Shelf (COTS) Considerations

1
SOFTWARE DEVELOPMENT ENVIRONMENT

This paragraph is some kind of complement to the Infrastructure Process (which is generic) for the Software Lifecycle environment concerning the Development Process.

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	7.1.1
	Definition
	A suitable set of development tools should be selected for the required Assurance Level.
	
	
	(
(Ref: 4.4.1)
	P
(Ref: 7.4.4)
	
	(
(Ref: GP 2.3)

	2
	7.1.2
	Programming Languages
	Suitable programming languages should be selected for the required Assurance Level.
	
	
	
	P
(Ref: 7.4.4.3)
	
	(
(Ref: TS 3.1, GP 2.3)

	3
	7.1.3
	Compiler Considerations
	Compilers features (optimisations, limitations, ..) should be defined.
	
	
	(
(Ref: 4.4.2)
	
	
	(
(Ref: TS 3.1, GP 2.3)

	4
	7.1.1
	Software Development Tool Qualification
	The limitations for such a qualification should be defined.
	
	P
(Ref: 5.2)
	(
(Ref: 12.2, 12.2.1)
	P
(Ref: 7.7.2.7)
	
	(
(Ref: Ver 1.2)

2
Commercial Off The Shelf (COTS) CONSIDERATIONS

Due to the extent of COTS usage in ANS software, a special attention has to be paid to COTS.

This section will be reviewed once ED109 is published, as the intention is to base the ANS software lifecycle on ED109 as far as COTS is concerned. Anyhow as ED109 is not yet published when this document “ANS Software lifecycle” is released, some words have been extracted from ED109 to give guidance.

Text in “Times New Roman” font is extracted from ED109.

2.1
COTS DEFINITION

First a definition of COTS as used in this document is necessary:

COTS software encompasses a wide range of software, including purchased software, Non-Developmental Items (NDI), and software previously developed without consideration of ED-109. The term “Previously Developed Software” is also used for such software. This software may or may not have been approved through other “approval processes.” Partial data or no data may be available as evidence of objectives of ANS developmental process. For the rest of this section, all such software is referred to as COTS for the sake of brevity. This terminology was selected because of the usual use of the term “COTS” within the “ground” ANS community.

Examples of COTS are operating systems, real-time kernels, graphical user interfaces, communication and telecommunication protocols, language run-time libraries, mathematical and low-level bit routines, and string manipulation routines. COTS software can be purchased apart from or in conjunction with COTS hardware, such as workstations, mainframes, communication and network equipment, or hardware items (e.g., memory, storage, I/O devices). There also may be some instances where the use of COTS software is impractical to avoid, e.g., library code associated with certain compilers.

COTS deliverables vary by the contract with the COTS supplier. They may extend from license rights, executable code, user documentation, and training to the full set of COTS lifecycle data, including the source code resulting from the COTS development. COTS information disclosure relates to cost, protection of intellectual properties, and legal questions (e.g., ownership of the software, patents, liability, and documentation responsibility). These aspects are beyond the scope of this guidance material, which addresses only those aspects that are specific to software assurance.
Development processes used by COTS suppliers and procurement processes applied by acquirers may not be equivalent to recommended processes, and may not be fully consistent with the guidance of this document. The use of COTS may mean that alternate methods are used to gain assurance that the appropriate objectives are satisfied. These methods include, but are not limited to, product service experience, prior assurance, process recognition, reverse engineering, restriction of functionality, formal methods, and audits and inspections. Data may also be combined from more than one method to gain assurance data that the objectives are satisfied.

In cases where sufficient data is not available to satisfy the objectives, this section may be used as guidance with agreement from the appropriate Approval Authority.

2.2

Scope of COTS Section

This section applies only to COTS used for ANS applications and is not intended to alter or substitute any of the objectives applied to ANS software unless justified by a safety assessment process and accepted by the appropriate Approval Authority.

2.3

System Aspects Relating to COTS in ANS

COTS software may need to be integrated into high integrity ANS systems or equipment; however, the higher the risk of the ANS function, the more demanding the assurance requirements are for the system and the software. Alternate methods may be used to augment design assurance data for COTS software components at a desired assurance level. When COTS are used in an ANS system, additional considerations such as planning, acquisition, and verification should be addressed.

Risk mitigation techniques may be considered to reduce the ANS system’s reliance on the COTS. The goal of these mitigation techniques is to accommodate the assigned SWAL by reducing the effect of anomalous behaviour of COTS on the ANS system function. Risk mitigation techniques may be achieved through a combination of people, procedure, equipment, or architecture. For example, architectural means may involve partitioning, redundancy, safety monitoring, COTS safe subsets by the use of encapsulation or wrappers, and data integrity checking.

2.4

COTS Planning Process

The purpose of the COTS planning process is to co-ordinate lifecycle processes specific to COTS and to define the methods and tools necessary for the incorporation of COTS in ANS systems. The verification of the COTS planning process is to assure that all issues regarding the use of COTS have been addressed. The ANS software planning process should accommodate COTS software if its use is anticipated. The COTS planning process includes planning for all aspects of COTS, including acquisition, verification, configuration management, and software quality assurance.

As part of the approval process, early submittal of the results of the COTS assessment and selection processes to the appropriate Approval Authority is recommended.

2.4.1
COTS Planning Process Objectives

The objectives of the COTS planning process are:

a. Activities for acquisition and integral processes, including additional considerations, integration, and maintenance, are defined.

b. Transition criteria for these processes and transition criteria with respect to ANS life cycle processes are defined.

c. Plans for COTS processes, including COTS transition criteria, are consistent with the ANS software plans.

2.4.2
COTS Planning Process Activities

The activities associated with the COTS planning process are:

a. COTS planning activities should evaluate the level of applicability of the COTS product to ANS requirements. The following considerations should be included in the evaluation to determine the level of effort involved in the use of COTS:

(1) Product availability.

(2) Requirements (mapping of ANS requirements to COTS capabilities; reference § 3.5 of this chapter).

(3) Availability of life cycle data.

(4) Level of integration and extent of additional efforts, such as, glue code, architecture mitigation techniques, etc. to allow incorporation of the COTS into the ANS system.

(5) Availability of applicable product service history or service experience.

(6) Supplier qualifications, such as, the use of standards, service history and length of service, technical support, etc.

(7) Configuration control, including visibility of COTS supplier’s product version control.

(8) Modification considerations. Modified COTS has additional considerations of warranty, authority to modify, continued technical support, etc., unless such modifications are allowed by the COTS supplier. The modifications themselves should be considered a new development. Change impact analysis should be performed to determine the extent of the necessary re-verification.

(9) Maintenance issues (e.g., patches, retirement, obsolescence, and change impact analysis).

(10) Evidence of SQA activities.

(11) Verifiability of the COTS software (includes limitations, need for special test facilities, etc.).

(12) Level of compliance with SWAL objectives.

(13) Information on COTS in-service problems and resolution of those problems.

b. Relationships between the COTS planning process, the COTS acquisition process, and the COTS integral processes should be defined. Additionally, relationships between COTS processes and appropriate ANS life cycle processes should be defined. Every input to a process need not be complete before that process can be initiated, if the transition criteria established for the process are satisfied.

c. Reviews should be conducted to ensure:

(1) The COTS planning process and the ANS planning process are consistent.

(2) COTS transition criteria are compatible with the ANS transition criteria.

(3) Transition criteria are verified to assure that the outputs of each process are sufficient to begin the next process.

Note:
COTS usage may necessitate considerations of glue code, architectural mitigation techniques, derived requirements, and COTS-specific integration. Any supplemental software due to COTS integration in ANS systems should be considered ANS developmental software for which all of the objectives in this document apply.

2.5

COTS Acquisition Process

The focus of this section is on the assurance aspects of acquiring COTS. There are additional acquisition considerations not described in this document. The COTS acquisition process is comprised of requirements definition, assessment, and selection.

a. Requirements Definition: The ANS software requirements definition process identifies software requirements that COTS may satisfy. COTS may contain more capabilities than the requirements needed by the ANS system. A definition of these capabilities may be available from the supplier or derived from the COTS user’s manuals, technical materials, product data, etc. In the model depicted in Figure 3.5-1, the ANS requirements satisfied by COTS are the intersection of COTS capabilities and ANS requirements.

Due to the use of COTS, there may be derived requirements (e.g., platform dependent requirements, interrupt handling, interface handling, resource requirements, usage constraints, error handling, partitioning) that should be added to the ANS software requirements.

All ANS requirements satisfied by the COTS software and the resulting derived requirements should be provided to the safety assessment process.

[image: image6.wmf]CNS/ATM

Requirements

COTS

Capabilities

CNS/ATM Requirements

satisfied by COTS

FIGURE 3.5-1 – Requirements Intersection

b. Assessment: Candidate COTS products should be assessed for their ability to implement the ANS requirements, for the effect of their respective derived requirements, and for their support of the needed assurance level. During the COTS assessment process, more than one COTS candidate product may be examined to determine the extent of intersection of COTS capabilities with the ANS requirements as depicted in Figure 3.5-1. Availability and relevance of COTS life cycle data to support the appropriate assurance level should also be assessed. Additionally, the impact of any unneeded COTS capabilities should be assessed.

d. Selection: The selection is an iterative process based on results from the assessment process and comparison of COTS suppliers (e.g., COTS supplier’s experience in ANS, the ability of the COTS supplier to support COTS software version control and maintenance over the expected lifetime of the ANS system, COTS supplier’s commitment to keep the ANS applicants informed of detected errors, COTS supplier’s willingness to address the issue of Escrow). Analyses may be conducted to compare advantages of using COTS versus developing the software.

2.5.1
COTS Acquisition Process Objectives

The objectives of the COTS acquisition process are:

a. The degree to which of the ANS software requirements are satisfied by the COTS capabilities is determined.
b. The adequacy of life cycle data available for assurance purposes is determined.

c. The derived requirements are identified. Derived requirements consist of:

(1) Requirements imposed on the ANS system due to the usage of COTS.

(2) Requirements to prevent the unneeded capabilities of the COTS from adversely affecting the ANS system.

d. The compatibility of COTS with target hardware and other ANS software is assured.

2.5.2
COTS Acquisition Process Activities

The activities of the COTS acquisition process are:

a. The COTS capabilities should be examined, and an analysis should be conducted against the ANS requirements. The purpose of this analysis is to determine the ANS requirements satisfied by COTS and to aid in the comparison of candidate COTS products.

b. Available COTS software lifecycle data should be assessed. A gap analysis should be performed against the objectives of this document for the proposed software assurance level. This analysis aids in comparison of candidate COTS products. This analysis is used to identify the objectives that are partially or fully satisfied, and those that need to be addressed through alternate methods.

c. Analysis should be conducted to identify derived requirements. This analysis should include all COTS software capabilities, both necessary and unnecessary. Derived requirements may be classified as follows:

(1) Requirements to prevent adverse effects of any unneeded functions of any COTS software. This may result in requirements for isolation, partitioning, wrapper code, coding directives, customization, etc.

(2) Requirements that the selected COTS may impose on the ANS system including those for preventing adverse effects of needed COTS functions (e.g. input formatting, call order, initialization, data conversion, resources, range checking). This may result in requirements for interface code, coding directives, architecture considerations, resource sizing, glue-code, etc.
d. All ANS requirements satisfied by COTS software, the resulting derived requirements, and any pertinent supplier-provided data should be provided to the safety assessment process.

e. The selected COTS should be shown to be compatible with the target computer(s) and interfacing systems.
2.6

COTS Verification Process

The COTS verification process is an extension of the verification process discussed in this document (Part I – Chapter 3, §4). In particular, the COTS acquisition process frequently identifies verification objectives that cannot be satisfied using traditional means. For those verification objectives where compliance cannot be demonstrated by the available COTS data (e.g., design or requirements), additional activities, including alternate methods such as reverse engineering, may be used after acceptance by the Approval Authority.

2.6.1
COTS Verification Process Objectives

There are no additional verification objectives imposed upon the ANS system because of use of COTS.

2.6.2
COTS Verification Process Activities

Typical verification activities for COTS software achieved include:

a. Software reviews and analyses of ANS requirements satisfied by COTS,

b. Requirements-Based Testing (RBT) of ANS requirements satisfied by COTS,

c. Verification of development of any supplemental software due to COTS (e.g., glue code, partitioning, wrappers), and

d. Verification of integration of COTS into the ANS system.

2.6.3
Alternative Methods for COTS

The use of alternate methods should satisfy both of the following conditions:

a. The safety assessment process supports the justification.

b. Acceptance is granted by the appropriate Approval Authority.

Activities used for specific alternate methods or for combination of alternate methods are considered on a case-by-case basis. An example of activities associated with the usage of service experience for assurance credit is provided below in Section 3.6.4.
2.6.4
Use of Service Experience for Assurance Credit of COTS Software

Use of service experience data for assurance credit is predicated upon two factors: sufficiency and relevance. Sufficient service experience data may be available through the typical practice of running new ANS systems in parallel with operational systems in the operational environment, long duration of simulation of new ANS systems, and multiple shadow operations executing in parallel at many locations. Relevant service experience data may be available for ANS systems from reuse of COTS software from in-service ANS Systems, or ANS system verification and pre-operational activities. For COTS software with no precedence in ANS applications, many processes may be used to collect service experience; examples include the validation process, the operator training process, the system qualification testing, the system operational evaluation, and field demonstrations.
The following applies for accumulation of service experience:

a. The use, conditions of use, and results of COTS service experience should be defined, assessed by the safety assessment process, and submitted to the appropriate Approval Authority.

b. The COTS operating environment during service experience time should be assessed to show relevance to the intended use in ANS. If the COTS operating environment of the existing and intended applications differ, additional verification should be performed to ensure that the COTS application and the ANS applications will operate as intended in the target environment. It should be assured that COTS capabilities to be used are exercised in all operational modes. Analysis should also be performed to assure that relevant permutations of input data are executed.

c. Any changes made to COTS during service experience time should be analysed. An analysis should be conducted to determine whether the changes made to COTS alter the applicability of the service experience data for the period preceding the changes.

d. All in-service problems should be evaluated for their potential adverse effect on ANS system operation. Any problem during service experience time, where COTS implication is established and whose resulting effect on ANS operations is not consistent with the safety assessment, should be recorded. Any such problem should be considered a failure. A failure invalidates the use of related service experience data for the period of service experience time preceding the correction of that problem.

e. COTS capabilities which are not necessary to meet ANS requirements should be shown to provide no adverse effect on ANS operations.

f. Service experience time should be the accumulated in-service hours. The number of copies in service should be taken into account to calculate service experience time, provided each copy and associated operating environment are shown to be relevant, and that a single copy accounts for a certain pre-negotiated percentage of the total.

Note: The text here after is added as a note in ED109/DO278, which make it informative and not normative. However, putting this text as informative was the result of a consensus with airworthiness experts. EATMP Software Task Force Members has decided to put it as normative.

Available COTS data may not be able to demonstrate satisfaction of all of the verification objectives described in this document. For example, high-level requirements testing for both robustness and normal operation may be demonstrated for COTS but the same tests for low-level requirements may not be accomplished. The use of service experience may be proposed to demonstrate satisfaction of these verification objectives for COTS. The amount of service experience to be used is selected based on engineering judgement and experience with the operation of ANS systems. The results of software reliability models cannot be used to justify service experience time. A possible approach for different assurance levels is provided below:

(1) Cannot be applied for SWAL1.
(2) A minimum of one year (8,760 hours) of service experience with no failure for SWAL2.
(3) A minimum of six months (4,380 hours) of service experience with no failure for SWAL3.

(4) SWAL4 objectives are typically satisfied without a need for alternate methods.

2.7

COTS Configuration Management Process

This section describes the configuration management process for a system using COTS. The configuration management system of the COTS supplier is not under the control of ANS configuration management system. The ANS configuration management system should include control of the COTS versions.

2.7.1
COTS Configuration Management Process Objectives

The objectives of the COTS configuration management process are:

a. The COTS specific configuration and data items (for example, software, documentation, adaptation data) are uniquely identified in the ANS software configuration management system.

b. The ANS problem reporting includes the management of problems found in COTS.

c. The ANS change control process ensures that the incorporation of COTS releases is controlled.

d. COTS-specific configuration and data items are included in the ANS archive, retrieval, and release.
2.7.2
COTS Configuration Management Process Activities

The activities associated with configuration management of COTS are:

a. An identification method should be established to ensure that the COTS configuration and data items are uniquely identified.

Note:
The identification method may be based on identification from the COTS supplier and any additional data such as release or delivery date.

b. The ANS problem reporting should include management of problems found in COTS, and a bi-directional problem reporting mechanism with the COTS supplier should be established.

c. The ANS change control process for the incorporation of updated COTS versions should be established.

An impact analysis of changes to the COTS baseline should be performed prior to incorporation of new releases of COTS.

Note:
The list of changes (problem fixes and new, changed, or deleted functions) implemented in each new release may be available from the COTS supplier.

d. The ANS archival, retrieval, and release should include COTS-specific configuration and data items.

Note: Consideration may be given to technology obsolescence issues for accessing archived data and escrow issues.

2.8

COTS Quality Assurance

The ANS quality assurance process should also assess the COTS processes and data outputs to obtain assurance that the objectives associated with COTS are satisfied.

Note:
It is recommended that the COTS supplier quality assurance is co-ordinated with the ANS quality assurance process where feasible.

2.9

COTS Specific Objectives
The following objectives should be satisfied in addition to the objectives contained in this document for non-COTS software.

	N°
	Obj
	Activity Title
	Activity
	ISO/IEC 12207
	ED109
	ED-12B/

DO 178B
	IEC 61508
	
	CMMI

	1
	7.2.1
	COTS planning
	Acquisition and integral process plans are defined.
	
	(
(Ref: 4.1.9 Table 4-1

line 1)
	
	
	
	(
(Ref: SAM GP 2.2, 3.1)

	2
	7.2.2
	COTS planning
	COTS plans are consistent with ANS software plans.
	
	(
(Ref: 4.1.9 Table 4-1

 line 3)
	
	
	
	(
(Ref: SAM 2.1
TS 2.4
IPM 1.3)

	3
	7.2.3
	COTS planning
	Transition criteria are defined.
	
	(
(Ref: 4.1.9 Table 4-1

 line 2)
	
	
	
	(
(Ref: SAM 2.1, 2.4)

	4
	7.2.4
	COTS Acquisition
	Adequacy of lifecycle data is determined.
	
	(
(Ref: 4.1.9 Table 4-2

 line 2)
	
	
	
	(
(Ref: SAM 2.1, TS 2.4)

	5
	7.2.5
	COTS Acquisition
	ANS requirements satisfied by the COTS software is determined.
	
	(
(Ref: 4.1.9 Table 4-2

 line 1)
	
	
	
	(
(Ref: SAM 2.1, TS 2.4)

	6
	7.2.6
	COTS Acquisition
	Compatibility of COTS with target hardware and other ANS software is assured.
	
	(
(Ref: 4.1.9 Table 4-2

 line 4)
	
	
	
	(
(Ref: SAM 2.1, TS 2.4)

	7
	7.2.7
	COTS Acquisition
	Derived* requirements are defined
	
	(
(Ref: 4.1.9 Table 4-2

 line 3)
	
	
	
	(
(Ref: TS 2.4, RD 2.2, 3.4)

	8
	7.2.8
	COTS Configuration Management
	COTS configuration and data items are archived.
	
	(
(Ref: 4.1.9 Table 4-3

 line 1)
	
	
	
	(
(Ref: CM 1.2)

	9
	7.2.9
	COTS Configuration Management
	COTS configuration and data items are identified.
	
	(
(Ref: 4.1.9 Table 4-3

 line 4)
	
	
	
	(
(Ref: CM 1.1, SAM GP 2.6)

	10
	7.2.10
	COTS Configuration Management
	COTS problem reporting is established.
	
	(
(Ref: 4.1.9 Table 4-3

 line 2)
	
	
	
	(
(Ref: SAM 2.3
CM 2.1)

	11
	7.2.11
	COTS Configuration Management
	Incorporation of COTS release is controlled.
	
	(
(Ref: 4.1.9 Table 4-3

 line 3)
	
	
	
	(
(Ref: CM 2.2)

*: COTS Derived requirements are defined in this Chapter 5 in §3.5.2.c

End of Part I
� See ED109 chapter 1.3

� P (Partially) allocation process is not directly applicable for ATM

� see adaptation data definition of ED109

Page I- 6
Released Issue
Edition: 3.0
Edition: 3.0
Released Issue
Page I-1

_1064751091.ppt

2

_1064751658.ppt

4

_1064751690.ppt

5

_1064751322.ppt

3

_1064750984.ppt

1

_1054491112.ppt

CNS/ATM Requirements

COTS Capabilities

CNS/ATM Requirements satisfied by COTS

